Higher spin from a world line prespective

Emanuele Latini Bologna University and LNF, INFN

Pisa, 20 March 2007

Summary

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

- Higher Spin and SO(N) Spinning particle
- Gauge fixing
- Gauge fixed partition function
 - ♦ Even N
 - ◆ Odd N
- Pashnev and Sorokin model
- Conclusions and outlook

Summary

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\operatorname{\mathsf{Odd}} N$

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

- Higher Spin and SO(N) Spinning particle
- Gauge fixing
- Gauge fixed partition function
 - ♦ Even N
 - ◆ Odd N
- Pashnev and Sorokin model
- Conclusions and outlook

Summary

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\operatorname{\mathsf{Odd}} N$

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

- \blacksquare Higher Spin and SO(N) Spinning particle
- Gauge fixing
- Gauge fixed partition function
 - ♦ Even N
 - ◆ Odd N
- Pashnev and Sorokin model
- Conclusions and outlook

Summary

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\operatorname{\mathsf{Odd}} N$

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

- \blacksquare Higher Spin and SO(N) Spinning particle
- Gauge fixing
- Gauge fixed partition function
 - ♦ Even N
 - ◆ Odd N
- Pashnev and Sorokin model
- Conclusions and outlook

Summary

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\operatorname{\mathsf{Odd}} N$

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

- \blacksquare Higher Spin and SO(N) Spinning particle
- Gauge fixing
- Gauge fixed partition function
 - ◆ Even N
 - ◆ Odd N
- Pashnev and Sorokin model
- Conclusions and outlook

Summary

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\operatorname{\mathsf{Odd}} N$

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

- Higher Spin and SO(N) Spinning particle
- Gauge fixing
- Gauge fixed partition function
 - ◆ Even N
 - ◆ Odd N
- Pashnev and Sorokin model
- Conclusions and outlook

Summary

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

- \blacksquare Higher Spin and SO(N) Spinning particle
- Gauge fixing
- Gauge fixed partition function
 - ◆ Even N
 - ◆ Odd N
- Pashnev and Sorokin model
- Conclusions and outlook

Summary

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

- \blacksquare Higher Spin and SO(N) Spinning particle
- Gauge fixing
- Gauge fixed partition function
 - ◆ Even N
 - ◆ Odd N
- Pashnev and Sorokin model
- Conclusions and outlook

SO(N) spinning particle model

Summary

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

The end

SO(N) SPINN. PARTICLE WITH SUGRA MULTIPLET \iff CONFORMAL PARTICLES ON THE WORLDLINE

SPIN N/2 IN D=4, IN "D" DIMENSION

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

The end

SO(N) SPINN. PARTICLE WITH SUGRA MULTIPLET ←→ CONFORMAL PARTICLES ON THE WORLDLINE

SPIN N/2 IN D=4, IN "D" DIMENSION

The action for this models reads

$$S[x, \psi_i^{\mu}, G] = \int_0^1 d\tau \left[\frac{1}{2} e^{-1} (\dot{x}^{\mu} - \chi_i \psi_i^{\mu})^2 + \frac{1}{2} \psi_i^{\mu} (\delta_{ij} \partial_{\tau} - \mathbf{a}_{ij}) \psi_{j\mu} \right]$$

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

The end

SO(N) SPINN. PARTICLE WITH SUGRA MULTIPLET \iff CONFORMAL PARTICLES ON THE WORLDLINE

SPIN N/2 IN $D=\overline{4}$, IN "D" DIMENSION

The action for this models reads

$$S[x,\psi_i^{\mu},G] = \int_0^1 d\tau \, \left[\frac{1}{2} e^{-1} (\dot{x}^{\mu} - \chi_i \psi_i^{\mu})^2 + \frac{1}{2} \psi_i^{\mu} (\delta_{ij} \partial_{\tau} - a_{ij}) \psi_{j\mu} \right]$$

The N world line supergravity multiplet contains

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

The end

SO(N) SPINN. PARTICLE WITH SUGRA MULTIPLET \iff CONFORMAL PARTICLES ON THE WORLDLINE

SPIN N/2 IN D=4, IN "D" DIMENSION

The action for this models reads

$$S[x,\psi_i^{\mu},G] = \int_0^1 d\tau \, \left[\frac{1}{2} e^{-1} (\dot{x}^{\mu} - \chi_i \psi_i^{\mu})^2 + \frac{1}{2} \psi_i^{\mu} (\delta_{ij} \partial_{\tau} - a_{ij}) \psi_{j\mu} \right]$$

The N world line supergravity multiplet contains

the enbein e which gauges worldline translations

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

SO(N) SPINN. PARTICLE WITH SUGRA MULTIPLET \iff CONFORMAL PARTICLES ON THE WORLDLINE

SPIN N/2 IN D=4, IN "D" DIMENSION

The action for this models reads

$$S[x,\psi_{i}^{\mu},G] = \int_{0}^{1} d\tau \, \left[\frac{1}{2} e^{-1} (\dot{x}^{\mu} - \chi_{i} \psi_{i}^{\mu})^{2} + \frac{1}{2} \psi_{i}^{\mu} (\delta_{ij} \partial_{\tau} - a_{ij}) \psi_{j\mu} \right]$$

The N world line supergravity multiplet contains

- the enbein e which gauges worldline translations
- gravitini χ_i which gauges worldline susy

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

Odd N

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

The end

SO(N) SPINN. PARTICLE WITH SUGRA MULTIPLET \iff CONFORMAL PARTICLES ON THE WORLDLINE

SPIN N/2 IN D=4, IN "D" DIMENSION

The action for this models reads

$$S[x,\psi_{i}^{\mu},G] = \int_{0}^{1} d\tau \, \left[\frac{1}{2} e^{-1} (\dot{x}^{\mu} - \chi_{i} \psi_{i}^{\mu})^{2} + \frac{1}{2} \psi_{i}^{\mu} (\delta_{ij} \partial_{\tau} - a_{ij}) \psi_{j\mu} \right]$$

The N world line supergravity multiplet contains

- the enbein e which gauges worldline translations
- gravitini χ_i which gauges worldline susy
- gauge field a_{ij} which gauges SO(N) symmetry

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

Odd N

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

The end

SO(N) SPINN. PARTICLE WITH SUGRA MULTIPLET \iff CONFORMAL PARTICLES ON THE WORLDLINE

SPIN N/2 IN D=4, IN "D" DIMENSION

The action for this models reads

$$S[x, \psi_i^{\mu}, G] = \int_0^1 d\tau \left[\frac{1}{2} e^{-1} (\dot{x}^{\mu} - \chi_i \psi_i^{\mu})^2 + \frac{1}{2} \psi_i^{\mu} (\delta_{ij} \partial_{\tau} - \mathbf{a}_{ij}) \psi_{j\mu} \right]$$

The N world line supergravity multiplet contains

- the enbein e which gauges worldline translations
- gravitini χ_i which gauges worldline susy
- gauge field a_{ij} which gauges SO(N) symmetry

OBJECTIVE

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

Odd N

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

The end

ON THE WORLDLINE

SO(N) SPINN. PARTICLE SPIN N/2 IN D=4, WITH SUGRA MULTIPLET \iff CONFORMAL PARTICLES IN "D" DIMENSION

The action for this models reads

$$S[x,\psi_{i}^{\mu},G] = \int_{0}^{1} d\tau \, \left[\frac{1}{2} e^{-1} (\dot{x}^{\mu} - \chi_{i} \psi_{i}^{\mu})^{2} + \frac{1}{2} \psi_{i}^{\mu} (\delta_{ij} \partial_{\tau} - a_{ij}) \psi_{j\mu} \right]$$

The N world line supergravity multiplet contains

- the enbein e which gauges worldline translations
- gravitini χ_i which gauges worldline susy
- gauge field a_{ij} which gauges SO(N) symmetry

OBJECTIVE: we want to study the partition function on the circle

$$Z \sim \int_{T^1} \frac{\mathcal{D}X\mathcal{D}G}{\text{Vol}(\text{Gauge})} e^{-S[X,G]}$$

Summary SO(N) spinning particle model

Gauge fixing

Gauge fixed partition function

_ _

 $\mathsf{Even}\ N$

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

gauge symmetry <

Summary SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

gauge symmetry
$$\left\{ egin{array}{ll} \delta {\it e} & = & \dot{\xi} + 2\chi_i \epsilon_i \end{array}
ight.$$

Summary $SO(N) \ {\rm spinning} \ {\rm particle} \ {\rm model}$

Gauge fixing

Gauge fixed partition function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

gauge symmetry
$$\begin{cases} \delta e &=& \dot{\xi} + 2\chi_i \epsilon_i \\ \delta \chi_i &=& \dot{\epsilon}_i - a_{ij} \epsilon_j + \alpha_{ij} \chi_j \end{cases}$$

Summary SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

 $\mathsf{Even}\ N$

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

gauge symmetry
$$\begin{cases} \delta \mathbf{e} &=& \dot{\xi} + 2\chi_i \epsilon_i \\ \delta \chi_i &=& \dot{\epsilon}_i - a_{ij} \epsilon_j + \alpha_{ij} \chi_j \\ \delta a_{ij} &=& \dot{\alpha}_{ij} + \alpha_{im} a_{mj} + \alpha_{jm} a_{im} \end{cases}$$

Gauge fixing

Gauge fixed partition

function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

The end

$$\begin{array}{lll} \text{gauge symmetry} \left\{ \begin{array}{ccc} \delta e & = & \dot{\xi} + 2\chi_i \epsilon_i \\ \delta \chi_i & = & \dot{\epsilon}_i - a_{ij} \epsilon_j + \alpha_{ij} \chi_j \\ \delta a_{ij} & = & \dot{\alpha}_{ij} + \alpha_{im} a_{mj} + \alpha_{jm} a_{im} \end{array} \right.$$

We take fermions and gravitino with antiperiodic boundary condition (ABC)

gravitinos can be completely gauged away

Gauge fixing

Gauge fixed partition

function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

The end

$$\begin{array}{lll} \text{gauge symmetry} \left\{ \begin{array}{ccc} \delta \pmb{e} & = & \dot{\pmb{\xi}} + 2\chi_i\epsilon_i \\ \delta\chi_i & = & \dot{\epsilon}_i - a_{ij}\epsilon_j + \alpha_{ij}\chi_j \\ \delta a_{ij} & = & \dot{\alpha}_{ij} + \alpha_{im}a_{mj} + \alpha_{jm}a_{im} \end{array} \right.$$

We take fermions and gravitino with antiperiodic boundary condition (ABC)

gravitinos can be completely gauged away

Our gauge choice

Gauge fixing

Gauge fixed partition

function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

The end

$$\begin{array}{lll} \text{gauge symmetry} \left\{ \begin{array}{ccc} \delta e & = & \dot{\xi} + 2\chi_i \epsilon_i \\ \delta \chi_i & = & \dot{\epsilon}_i - a_{ij} \epsilon_j + \alpha_{ij} \chi_j \\ \delta a_{ij} & = & \dot{\alpha}_{ij} + \alpha_{im} a_{mj} + \alpha_{jm} a_{im} \end{array} \right.$$

We take fermions and gravitino with antiperiodic boundary condition (ABC)

gravitinos can be completely gauged away

Our gauge choice

$$\begin{array}{ccc} e & \to & \beta \in [0, \infty) \\ \chi_i & \to & 0 \\ a_{ij} & \to & \hat{a}_{ij}(\theta_k) \text{ with } \theta_k \in [0, 2\pi] \end{array}$$

Gauge fixing

Gauge fixed partition

function

Even N

 $egin{aligned} \mathsf{Odd} \ N \ Dof(D,N) \end{aligned}$

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

The end

$$\begin{array}{lll} \text{gauge symmetry} \left\{ \begin{array}{ccc} \delta \pmb{e} & = & \dot{\pmb{\xi}} + 2\chi_i\epsilon_i \\ \delta\chi_i & = & \dot{\epsilon}_i - a_{ij}\epsilon_j + \alpha_{ij}\chi_j \\ \delta a_{ij} & = & \dot{\alpha}_{ij} + \alpha_{im}a_{mj} + \alpha_{jm}a_{im} \end{array} \right.$$

We take fermions and gravitino with antiperiodic boundary condition (ABC)

gravitinos can be completely gauged away

Our gauge choice

$$\begin{array}{ccc} e & \to & \beta \in [0, \infty) \\ \chi_i & \to & 0 \\ a_{ij} & \to & \hat{a}_{ij}(\theta_k) \text{ with } \theta_k \in [0, 2\pi] \end{array}$$

fixes the supergravity multiplet up to some moduli

Gauge fixing

Gauge fixed partition function

Even N

Odd N

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

We take fermions and gravitino with antiperiodic boundary condition (ABC)

gravitinos can be completely gauged away

Our gauge choice

$$\begin{array}{ccc} e & \to & \beta \in [0, \infty) \\ \chi_i & \to & 0 \\ a_{ij} & \to & \hat{a}_{ij}(\theta_k) \text{ with } \theta_k \in [0, 2\pi] \end{array}$$

fixes the supergravity multiplet up to some moduli

 \blacksquare β is the usual proper time

Gauge fixing

Gauge fixed partition function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

The end

We take fermions and gravitino with antiperiodic boundary condition (ABC)

gravitinos can be completely gauged away

Our gauge choice

$$egin{array}{cccc} e &
ightarrow & eta \in [0,\infty) \\ \chi_i &
ightarrow & 0 \\ a_{ij} &
ightarrow & \hat{a}_{ij}(heta_k) ext{ with } heta_k \in [0,2\pi] \end{array}$$

fixes the supergravity multiplet up to some moduli

- \square β is the usual proper time
- $\hat{a}_{ij}(\theta_k)$ is some block diagonal matrix we discuss later

Summary

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition function

Even N

 $\operatorname{\mathsf{Odd}} N$

Dof(D,N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

The gauge fixed partition function reads

$$Z = -\frac{1}{2} \int_{0}^{\infty} \frac{d\beta}{\beta} \int \frac{d^{D}x}{(2\pi\beta)^{\frac{D}{2}}}$$

$$K_{N} \prod_{k=1}^{r} \int_{0}^{2\pi} \frac{d\theta_{k}}{2\pi} \operatorname{Det}(\partial_{\tau} - \hat{a}_{vec})^{\frac{D}{2}-1}_{ABC} \operatorname{Det}'(\partial_{\tau} - \hat{a}_{adj})_{PBC}$$

Summary

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

The gauge fixed partition function reads

$$Z = -\frac{1}{2} \int_{0}^{\infty} \frac{d\beta}{\beta} \int \frac{d^{D}x}{(2\pi\beta)^{\frac{D}{2}}}$$

$$K_{N} \prod_{k=1}^{r} \int_{0}^{2\pi} \frac{d\theta_{k}}{2\pi} \operatorname{Det}(\partial_{\tau} - \hat{a}_{vec})^{\frac{D}{2}-1}_{ABC} \operatorname{Det}'(\partial_{\tau} - \hat{a}_{adj})_{PBC}$$

this is a normalization factor we will discuss later

Summary

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition function

Even N

 $\operatorname{\mathsf{Odd}} N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

The gauge fixed partition function reads

$$Z = -\frac{1}{2} \int_{0}^{\infty} \frac{d\beta}{\beta} \int \frac{d^{D}x}{(2\pi\beta)^{\frac{D}{2}}}$$

$$K_{N} \prod_{k=1}^{r} \int_{0}^{2\pi} \frac{d\theta_{k}}{2\pi} \operatorname{Det}(\partial_{\tau} - \hat{a}_{vec})_{ABC}^{\frac{D}{2}-1} \operatorname{Det}'(\partial_{\tau} - \hat{a}_{adj})_{PBC}$$

b determinants of the susy ghosts and Majorana fermions which all have antiperiodic boundary conditions (ABC) and transform in the vector representation of SO(N)

Summary

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

The gauge fixed partition function reads

$$Z = -\frac{1}{2} \int_{0}^{\infty} \frac{d\beta}{\beta} \int \frac{d^{D}x}{(2\pi\beta)^{\frac{D}{2}}}$$

$$K_{N} \prod_{k=1}^{r} \int_{0}^{2\pi} \frac{d\theta_{k}}{2\pi} \operatorname{Det}(\partial_{\tau} - \hat{a}_{vec})^{\frac{D}{2}-1}_{ABC} \operatorname{Det}'(\partial_{\tau} - \hat{a}_{adj})_{PBC}$$

◆ This determinant is due to the ghosts for the SO(N) gauge symmetry; they transform in the adjoint representation and have periodic boundary conditions (PBC). It's indicated by Det' because it contains zero modes we have to exclude from the determinant

Summary

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

The gauge fixed partition function reads

$$Z = -\frac{1}{2} \int_0^\infty \frac{d\beta}{\beta} \int \frac{d^D x}{(2\pi\beta)^{\frac{D}{2}}}$$

$$K_N \prod_{k=1}^{r} \int_{0}^{2\pi} \frac{d\theta_k}{2\pi} \operatorname{Det} \left(\partial_{\tau} - \hat{a}_{vec}\right)_{ABC}^{\frac{D}{2} - 1} \operatorname{Det}' \left(\partial_{\tau} - \hat{a}_{adj}\right)_{PBC}$$

THIS LINE COMPUTES THE NUMBER OF DEGREES OF FREEDOM (Dof) NORMALIZED TO ONE FOR A REAL SCALAR FIELD

Even N

 $\operatorname{\mathsf{Odd}} N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

Using constant gauge transformations $\Rightarrow a_{ij}$ is block diagonal

Even N

 $\mathsf{Odd}\ N$

 $Dof(D, \overline{N})$

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

Using constant gauge transformations $\Rightarrow a_{ij}$ is block diagonal

$$\hat{a}_{ij} = \left(egin{array}{cccc} 0 & heta_1 & . & 0 & 0 \ - heta_1 & 0 & . & 0 & 0 \ . & . & . & . & . \ 0 & 0 & . & 0 & heta_r \ 0 & 0 & . & - heta_r & 0 \end{array}
ight) \qquad r = rac{N}{2} = SO(N) \; {
m rank}$$

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

Using constant gauge transformations $\Rightarrow a_{ij}$ is block diagonal

$$\hat{a}_{ij} = \left(egin{array}{ccccc} 0 & heta_1 & . & 0 & 0 \ - heta_1 & 0 & . & 0 & 0 \ . & . & . & . & . \ 0 & 0 & . & 0 & heta_r \ 0 & 0 & . & - heta_r & 0 \end{array}
ight) \qquad r = rac{N}{2} = SO(N) \; {
m rank} \; .$$

Using large gauge transformation $\Rightarrow \theta_r \sim \theta_r + 2\pi n$ $\theta_k =$ angles

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

Using constant gauge transformations $\Rightarrow a_{ij}$ is block diagonal

$$\hat{a}_{ij} = \left(egin{array}{ccccc} 0 & heta_1 & . & 0 & 0 \ - heta_1 & 0 & . & 0 & 0 \ . & . & . & . & . \ 0 & 0 & . & 0 & heta_r \ 0 & 0 & . & - heta_r & 0 \end{array}
ight) \qquad r = rac{N}{2} = SO(N) \; {
m rank}$$

Using large gauge transformation $\Rightarrow \theta_r \sim \theta_r + 2\pi n$ $\theta_k =$ angles

Even N

 $\operatorname{\mathsf{Odd}} N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

Using constant gauge transformations $\Rightarrow a_{ij}$ is block diagonal

$$\hat{a}_{ij} = \left(egin{array}{cccc} 0 & heta_1 & . & 0 & 0 \ - heta_1 & 0 & . & 0 & 0 \ . & . & . & . & . \ 0 & 0 & . & 0 & heta_r \ 0 & 0 & . & - heta_r & 0 \end{array}
ight) \qquad r = rac{N}{2} = SO(N) \; {
m rank}$$

Using large gauge transformation $\Rightarrow \overline{\theta_r} \sim \theta_r + 2\pi n - \overline{\theta_k}$ =angles

Det
$$(\partial_{\tau} - \hat{a}_{vec})_{ABC}^{\frac{D}{2}-1} = \prod_{k=1}^{r} (2\cos\frac{\theta_k}{2})^{D-2}$$

Even N

Odd N

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

Using constant gauge transformations $\Rightarrow a_{ij}$ is block diagonal

$$\hat{a}_{ij} = \left(egin{array}{ccccc} 0 & heta_1 & . & 0 & 0 \ - heta_1 & 0 & . & 0 & 0 \ . & . & . & . & . \ 0 & 0 & . & 0 & heta_r \ 0 & 0 & . & - heta_r & 0 \end{array}
ight) \qquad r = rac{N}{2} = SO(N) \; {
m rank}$$

Using large gauge transformation $\Longrightarrow \overline{\theta_r} \sim \overline{\theta_r} + 2\pi n - \overline{\theta_k}$ =angles

Det
$$(\partial_{\tau} - \hat{a}_{vec})_{ABC}^{\frac{D}{2}-1} = \prod_{k=1}^{r} (2\cos\frac{\theta_k}{2})^{D-2}$$

$$K_N = \frac{2}{2^r} \frac{1}{r!}$$

Even N

 $\mathsf{Odd}\ N$

Pashnev and Sorokin model

Conclusion

Outlook

The end

Using constant gauge transformations $\Rightarrow a_{ij}$ is block diagonal

$$\hat{a}_{ij} = \left(egin{array}{ccccc} 0 & heta_1 & . & 0 & 0 \ - heta_1 & 0 & . & 0 & 0 \ . & . & . & . & . \ 0 & 0 & . & 0 & heta_r \ 0 & 0 & . & - heta_r & 0 \end{array}
ight) \qquad r = rac{N}{2} = SO(N) \; {
m rank}$$

Using large gauge transformation $\Longrightarrow \overline{\theta_r} \sim \overline{\theta_r} + 2\pi n - \overline{\theta_k}$ =angles

Det
$$(\partial_{\tau} - \hat{a}_{vec})_{ABC}^{\frac{D}{2}-1} = \prod_{k=1}^{r} (2\cos\frac{\theta_k}{2})^{D-2}$$

$$k_N = \frac{2}{2^r} \frac{1}{r!}$$

Using constant SO(n) transformation one can only change signs to pairs of angles simultaneously

$$\left(\begin{array}{cccc}
+\Theta_i & \cdot & 0 \\
\cdot & \cdot & \cdot \\
0 & \cdot & +\Theta_j
\end{array}\right)$$

Even N

 $\mathsf{Odd}\ N$

Pashnev and Sorokin model

Conclusion

Outlook

The end

Using constant gauge transformations $\Rightarrow a_{ij}$ is block diagonal

$$\hat{a}_{ij} = \left(egin{array}{ccccc} 0 & heta_1 & . & 0 & 0 \ - heta_1 & 0 & . & 0 & 0 \ . & . & . & . & . \ 0 & 0 & . & 0 & heta_r \ 0 & 0 & . & - heta_r & 0 \end{array}
ight) \qquad r = rac{N}{2} = SO(N) \; {
m rank}$$

Using large gauge transformation $\Longrightarrow \overline{\theta_r} \sim \overline{\theta_r} + 2\pi n - \overline{\theta_k}$ =angles

Det
$$(\partial_{\tau} - \hat{a}_{vec})_{ABC}^{\frac{D}{2}-1} = \prod_{k=1}^{r} (2\cos\frac{\theta_k}{2})^{D-2}$$

Using constant SO(n) transformation one can only change signs to pairs of angles simultaneously

$$\left(\begin{array}{cccc}
-\Theta_i & \cdot & 0 \\
\cdot & \cdot & \cdot \\
0 & \cdot & -\Theta_j
\end{array}\right)$$

Even N

 $\mathsf{Odd}\ N$

Pashnev and Sorokin model

Conclusion

Outlook

The end

Using constant gauge transformations $\Rightarrow a_{ij}$ is block diagonal

$$\hat{a}_{ij} = \left(egin{array}{cccc} 0 & heta_1 & . & 0 & 0 \ - heta_1 & 0 & . & 0 & 0 \ . & . & . & . & . \ 0 & 0 & . & 0 & heta_r \ 0 & 0 & . & - heta_r & 0 \end{array}
ight) \qquad r = rac{N}{2} = SO(N) \; {
m rank}$$

Using large gauge transformation $\Longrightarrow \overline{\theta_r} \sim \overline{\theta_r} + 2\pi n - \overline{\theta_k}$ =angles

Det
$$(\partial_{\tau} - \hat{a}_{vec})_{ABC}^{\frac{D}{2}-1} = \prod_{k=1}^{r} (2\cos\frac{\theta_k}{2})^{D-2}$$

$$k_N = \frac{2}{2^r} \frac{1}{r!}$$

this factor is due to the fact that with a SO(N) transformation one can permute the angles θ_i

Even N

 $\operatorname{\mathsf{Odd}} N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

$$Dof(D, N = 2r) = \frac{2}{2^r r!} \prod_{k=1}^r \int_0^{2\pi} \frac{d\theta_k}{2\pi} (2\cos\frac{\theta}{2})^{D-2}$$
$$\prod_{k < l} [(2\cos\frac{\theta_k}{2})^2 - (2\cos\frac{\theta_l}{2})^2]$$

Det
$$(\partial_{\tau} - \hat{a}_{vec})_{ABC}^{\frac{D}{2}-1} = \prod_{k=1}^{r} (2\cos\frac{\theta_k}{2})^{D-2}$$

$$K_N = \frac{2}{2^r} \frac{1}{r!}$$

$\mathsf{Odd}\ N$

Outlook The end

Dof(D,N) Pashnev and Sorokin model Dof(D,PS) Conclusion

$\mathsf{Odd}\ N$

Dof(D, N)Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

$$\hat{a}_{ij} = \left(\begin{array}{ccccc} 0 & \theta_1 & . & 0 & 0 & 0 \\ -\theta_1 & 0 & . & 0 & 0 & 0 \\ . & . & . & . & . & . \\ 0 & 0 & 0 & 0 & \theta_r & 0 \\ 0 & 0 & 0 & -\theta_r & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right) \qquad r = \frac{N-1}{2} = SO(N) \; {\rm rank}$$

$$r=rac{N-1}{2}=SO(N)$$
 rank

$\operatorname{\mathsf{Odd}} N$

Dof(D,N) Pashnev and Sorokin model Dof(D,PS) Conclusion

Outlook
The end

$$\hat{a}_{ij} = \begin{pmatrix} 0 & \theta_1 & . & 0 & 0 & 0 \\ -\theta_1 & 0 & . & 0 & 0 & 0 \\ . & . & . & . & . & . \\ 0 & 0 & 0 & 0 & \theta_r & 0 \\ 0 & 0 & 0 & -\theta_r & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad r = \frac{N-1}{2} = SO(N) \text{ rank}$$

• Det'
$$(\partial_{\tau} - \hat{a}_{adj})_{PBC} = 64 \prod_{k=1}^{r} \sin^2 \frac{\theta_k}{2} \prod_{k < l} \sin^2 \frac{\theta_k + \theta_l}{2} \sin^2 \frac{\theta_k - \theta_l}{2}$$

$\mathsf{Odd}\ N$

Dof(D, N)Pashnev and Sorokin model Dof(D, PS)

Conclusion

Outlook

The end

$$\hat{a}_{ij} = \left(\begin{array}{cccccc} 0 & \theta_1 & . & 0 & 0 & 0 \\ -\theta_1 & 0 & . & 0 & 0 & 0 \\ . & . & . & . & . & . \\ 0 & 0 & 0 & 0 & \theta_r & 0 \\ 0 & 0 & 0 & -\theta_r & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right) \qquad r = \frac{N-1}{2} = SO(N) \; \text{rank}$$

• Det'
$$(\partial_{\tau} - \hat{a}_{adj})_{PBC} = 64 \prod_{k=1}^{r} \sin^2 \frac{\theta_k}{2} \prod_{k < l} \sin^2 \frac{\theta_k + \theta_l}{2} \sin^2 \frac{\theta_k - \theta_l}{2}$$

$\operatorname{\mathsf{Odd}} N$

Dof(D,N) Pashnev and Sorokin model Dof(D,PS) Conclusion

Outlook
The end

$$\hat{a}_{ij} = \left(\begin{array}{ccccc} 0 & \theta_1 & . & 0 & 0 & 0 \\ -\theta_1 & 0 & . & 0 & 0 & 0 \\ . & . & . & . & . & . \\ 0 & 0 & 0 & 0 & \theta_r & 0 \\ 0 & 0 & 0 & -\theta_r & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right) \qquad r = \frac{N-1}{2} = SO(N) \; {\rm rank}$$

$$\det (\partial_{\tau} - \hat{a}_{vec})_{ABC}^{\frac{D}{2} - 1} = 2^{\frac{D}{2} - 1} \prod_{k=1}^{r} (2\cos\frac{\theta_k}{2})^{D-2}$$

$$K_N = \frac{1}{2^r} \frac{1}{r!}$$

$\operatorname{\mathsf{Odd}} N$

Dof(D, N)Pashnev and Sorokin

model Sorokin

Dof(D, PS)

Conclusion

Outlook

The end

in a way somewhat similar to the even case one finds:

$$\hat{a}_{ij} = \left(\begin{array}{cccccc} 0 & \theta_1 & . & 0 & 0 & 0 \\ -\theta_1 & 0 & . & 0 & 0 & 0 \\ . & . & . & . & . & . \\ 0 & 0 & 0 & 0 & \theta_r & 0 \\ 0 & 0 & 0 & -\theta_r & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right) \qquad r = \frac{N-1}{2} = SO(N) \; \text{rank}$$

• Det'
$$(\partial_{\tau} - \hat{a}_{adj})_{PBC} = 64 \prod_{k=1}^{r} \sin^2 \frac{\theta_k}{2} \prod_{k < l} \sin^2 \frac{\theta_k + \theta_l}{2} \sin^2 \frac{\theta_k - \theta_l}{2}$$

the factor 2 that appeared in the even case is not included here since one can always reflect the last coordinate to obtain an SO(N) transformation that changes θ_k into $-\theta_k$

$$\begin{pmatrix}
+\Theta_i & \cdot & 0 \\
\cdot & \cdot & \cdot \\
0 & \cdot & +\Theta_j
\end{pmatrix}$$

$\operatorname{\mathsf{Odd}} N$

Dof(D, N)Pashnev and Sorokin model Dof(D, PS)

Conclusion

Outlook

The end

in a way somewhat similar to the even case one finds:

$$\hat{a}_{ij} = \left(\begin{array}{cccccc} 0 & \theta_1 & . & 0 & 0 & 0 \\ -\theta_1 & 0 & . & 0 & 0 & 0 \\ . & . & . & . & . & . \\ 0 & 0 & 0 & 0 & \theta_r & 0 \\ 0 & 0 & 0 & -\theta_r & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right) \qquad r = \frac{N-1}{2} = SO(N) \; \text{rank}$$

• Det'
$$(\partial_{\tau} - \hat{a}_{adj})_{PBC} = 64 \prod_{k=1}^{r} \sin^2 \frac{\theta_k}{2} \prod_{k < l} \sin^2 \frac{\theta_k + \theta_l}{2} \sin^2 \frac{\theta_k - \theta_l}{2}$$

the factor 2 that appeared in the even case is not included here since one can always reflect the last coordinate to obtain an SO(N) transformation that changes θ_k into $-\theta_k$

$$\begin{pmatrix}
-\Theta_i & \cdot & 0 \\
\cdot & \cdot & \cdot \\
0 & \cdot & +\Theta_j
\end{pmatrix}$$

$\operatorname{\mathsf{Odd}} N$

Dof(D, N)Pashnev and Sorokin model Dof(D, PS)

Conclusion

Outlook

The end

in a way somewhat similar to the even case one finds:

$$\hat{a}_{ij} = \left(\begin{array}{cccccc} 0 & \theta_1 & . & 0 & 0 & 0 \\ -\theta_1 & 0 & . & 0 & 0 & 0 \\ . & . & . & . & . & . \\ 0 & 0 & 0 & 0 & \theta_r & 0 \\ 0 & 0 & 0 & -\theta_r & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right) \qquad r = \frac{N-1}{2} = SO(N) \; \text{rank}$$

• Det'
$$(\partial_{\tau} - \hat{a}_{adj})_{PBC} = 64 \prod_{k=1}^{r} \sin^2 \frac{\theta_k}{2} \prod_{k < l} \sin^2 \frac{\theta_k + \theta_l}{2} \sin^2 \frac{\theta_k - \theta_l}{2}$$

the factor 2 that appeared in the even case is not included here since one can always reflect the last coordinate to obtain an SO(N) transformation that changes θ_k into $-\theta_k$

$$\begin{pmatrix}
+\Theta_i & \cdot & 0 \\
\cdot & \cdot & \cdot \\
0 & \cdot & -\Theta_j
\end{pmatrix}$$

$\operatorname{\mathsf{Odd}} N$

Dof(D,N) Pashnev and Sorokin model Dof(D,PS) Conclusion

Outlook
The end

in a way somewhat similar to the even case one finds:

$$\hat{a}_{ij} = \left(\begin{array}{cccccc} 0 & \theta_1 & . & 0 & 0 & 0 \\ -\theta_1 & 0 & . & 0 & 0 & 0 \\ . & . & . & . & . & . \\ 0 & 0 & 0 & 0 & \theta_r & 0 \\ 0 & 0 & 0 & -\theta_r & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right) \qquad r = \frac{N-1}{2} = SO(N) \; {\rm rank}$$

due to the permutation

$\mathsf{Odd}\ N$

Dof(D,N) Pashnev and Sorokin model Dof(D,PS) Conclusion

Outlook The end

$$Dof(D, N = 2r + 1) = \frac{2^{\frac{D}{2} - 1}}{2^r r!} \prod_{k=1}^r \int_0^{2\pi} \frac{d\theta_k}{2\pi} (2\cos\frac{\theta}{2})^{D-2} (2\sin\frac{\theta}{2})^2$$
$$\prod_{k < l} [(2\sin\frac{\theta_k + \theta_l}{2})^2 (2\sin\frac{\theta_k - \theta_l}{2})^2]$$

Det
$$(\partial_{\tau} - \hat{a}_{vec})_{ABC}^{\frac{D}{2}-1} = 2^{\frac{D}{2}-1} \prod_{k=1}^{r} (2\cos\frac{\theta_k}{2})^{D-2}$$

$$K_N = \frac{1}{2^r} \frac{1}{r!}$$

Summary SO(N)

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\operatorname{\mathsf{Odd}} N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

We have used "ortoghonal polynomial method" to compute the integral:

Dof(D, N)

The end

Pashnev and Sorokin model Dof(D,PS) Conclusion Outlook

We have used "ortoghonal polynomial method" to compute the integral:

$$Dof(2d, 2r) = 2^{r-1} \frac{(2d-2)!}{[(d-1)!]^2} \prod_{k=1}^{r-1} \frac{k (2k-1)! (2k+2d-3)!}{(2k+d-2)! (2k+d-1)!}$$

$$Dof(2d, 2r+1) = \frac{2^{d-2+r}(2d-2)!}{d[(d-1)!]^2} \prod_{k=1}^{r-1} \frac{(k+d-1)(2k+1)!(2k+2d-3)!}{(2k+d-1)!(2k+d)!}$$

Dof(D, N)

The end

Pashnev and Sorokin model Dof(D, PS) Conclusion Outlook

We have used "ortoghonal polynomial method" to compute the integral:

$$Dof(2d, 2r) = 2^{r-1} \frac{(2d-2)!}{[(d-1)!]^2} \prod_{k=1}^{r-1} \frac{k (2k-1)! (2k+2d-3)!}{(2k+d-2)! (2k+d-1)!}$$

$$Dof(2d, 2r+1) = \frac{2^{d-2+r}(2d-2)!}{d[(d-1)!]^2} \prod_{k=1}^{r-1} \frac{(k+d-1)(2k+1)!(2k+2d-3)!}{(2k+d-1)!(2k+d)!}$$

OBSERVATION:

Dof(D, N)

Pashnev and Sorokin model Dof(D, PS) Conclusion Outlook The end

We have used "ortoghonal polynomial method" to compute the integral:

$$Dof(2d, 2r) = 2^{r-1} \frac{(2d-2)!}{[(d-1)!]^2} \prod_{k=1}^{r-1} \frac{k (2k-1)! (2k+2d-3)!}{(2k+d-2)! (2k+d-1)!}$$

$$Dof(2d, 2r+1) = \frac{2^{d-2+r}(2d-2)!}{d[(d-1)!]^2} \prod_{k=1}^{r-1} \frac{(k+d-1)(2k+1)!(2k+2d-3)!}{(2k+d-1)!(2k+d)!}$$

OBSERVATION:

$$Dof(2d+1, N) = 0 \qquad \forall N > 1$$

Dof(D, N)

The end

Pashnev and Sorokin model Dof(D, PS) Conclusion Outlook

We have used "ortoghonal polynomial method" to compute the integral:

$$Dof(2d, 2r) = 2^{r-1} \frac{(2d-2)!}{[(d-1)!]^2} \prod_{k=1}^{r-1} \frac{k (2k-1)! (2k+2d-3)!}{(2k+d-2)! (2k+d-1)!}$$

$$Dof(2d, 2r+1) = \frac{2^{d-2+r}(2d-2)!}{d[(d-1)!]^2} \prod_{k=1}^{r-1} \frac{(k+d-1)(2k+1)!(2k+2d-3)!}{(2k+d-1)!(2k+d)!}$$

SPECIAL CASES:

Dof(D, N)Pashnev and Sorokin

model Dof(D, PS)Conclusion

Outlook The end

$$2^{r-1} \frac{(2d-2)}{[(d-1)!]}$$

$$\prod^{r-1} \frac{k (2k-1)!}{(2k+d-2)}$$

$$Dof(2d, 2r) = 2^{r-1} \frac{(2d-2)!}{[(d-1)!]^2} \prod_{k=1}^{r-1} \frac{k (2k-1)! (2k+2d-3)!}{(2k+d-2)! (2k+d-1)!}$$

$$Dof(2d, 2r+1) = \frac{2^{d-2+r}(2d-2)}{d[(d-1)!]^2}$$

$$Dof(2d, 2r+1) = \frac{2^{d-2+r}(2d-2)!}{d[(d-1)!]^2} \prod_{k=1}^{r-1} \frac{(k+d-1)(2k+1)!(2k+2d-3)!}{(2k+d-1)!(2k+d)!}$$

We have used "ortoghonal polynomial method" to compute the integral:

$$Dof(2,N) = 1, \forall N$$

$$Dof(4,N) = 2, \forall N$$

$$Dof(2d,2) = \frac{(2d-2)!}{[(d-1)!]^2}$$

$$Dof(2d,3) = \frac{2^{d-1}}{d} \frac{(2d-2)!}{[(d-1)!]^2}$$

Pashnev and Sorokin model

Summary SO(N) spinning particle model Gauge fixing Gauge fixed partition function

Even N

Odd N

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

For N=4 the gauge group is $SO(4)=SU(2)\times SU(2)$. In the literature, by Pashnev and Sorokin, also the model with a factor SU(2) gauged and the other SU(2) left as a global symmetry has been considered

Pashnev and Sorokin model

Summary SO(N) spinning particle model Gauge fixing Gauge fixed partition function Even N

Pashnev and Sorokin model

Dof(D, PS)

Dof(D, N)

Conclusion

Outlook
The end

For N=4 the gauge group is $SO(4)=SU(2)\times SU(2)$. In the literature, by Pashnev and Sorokin, also the model with a factor SU(2) gauged and the other SU(2) left as a global symmetry has been considered.

Quantization of this model seems to produce an inconsistency

Pashnev and Sorokin model

Summary SO(N) spinning particle model Gauge fixing Gauge fixed partition function Even N Odd N Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

For N=4 the gauge group is $SO(4)=SU(2)\times SU(2)$. In the literature, by Pashnev and Sorokin, also the model with a factor SU(2) gauged and the other SU(2) left as a global symmetry has been considered.

Quantization of this model seems to produce an inconsistency:

Dirac operatorial quantization

seems to describe

- three scalar
- a spin 2

$$Dof(D=4, PS) = 5$$

Gupta Bleuler quantization

seems to describe

- two scalar
- a spin 2

$$Dof(D=4, PS) = 4$$

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\operatorname{\mathsf{Odd}} N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

$$Dof(D, PS) = \frac{1}{2} \int_0^{2\pi} \frac{d\theta}{2\pi} (2\cos\frac{\theta}{2})^{2(D-2)} (2\sin\theta)^2 =$$

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

$$Dof(D, PS) = \frac{1}{2} \int_{0}^{2\pi} \frac{d\theta}{2\pi} (2\cos\frac{\theta}{2})^{2(D-2)} (2\sin\theta)^{2} = \frac{2^{D-1}(2D-3)!!}{D!}$$

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

$$Dof(D, PS) = \frac{1}{2} \int_0^{2\pi} \frac{d\theta}{2\pi} (2\cos\frac{\theta}{2})^{2(D-2)} (2\sin\theta)^2 = \frac{2^{D-1}(2D-3)!!}{D!}$$

D	Dof
2	1
3	2
4	5
5	14

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

The end

In this case the number of degrees of freedom is given by

$$Dof(D, PS) = \frac{1}{2} \int_0^{2\pi} \frac{d\theta}{2\pi} (2\cos\frac{\theta}{2})^{2(D-2)} (2\sin\theta)^2 = \frac{2^{D-1}(2D-3)!!}{D!}$$

D	Dof
2	1
3	2
4	5
5	14

OBSERVATION:

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

 $\mathsf{Odd}\ N$

Dof(D, N)

Pashnev and Sorokin model

$$Dof(D,PS)$$

Conclusion

Outlook

The end

In this case the number of degrees of freedom is given by

$$Dof(D, PS) = \frac{1}{2} \int_{0}^{2\pi} \frac{d\theta}{2\pi} (2\cos\frac{\theta}{2})^{2(D-2)} (2\sin\theta)^{2} = \frac{2^{D-1}(2D-3)!!}{D!}$$

D	Dof
2	1
3	2
4	5
5	14

OBSERVATION:

Our analysis gives 5 degrees of freedom in D=4, corresponding presumably to a graviton and three scalars.

Summary SO(N) spinning

particle model

Gauge fixing
Gauge fixed partition

function

Even N Odd N

Dof(D, N)

Pashnev and Sorokin model

Conclusion

Outlook

The end

In this case the number of degrees of freedom is given by

$$Dof(D, PS) = \frac{1}{2} \int_{0}^{2\pi} \frac{d\theta}{2\pi} (2\cos\frac{\theta}{2})^{2(D-2)} (2\sin\theta)^{2} = \frac{2^{D-1}(2D-3)!!}{D!}$$

D	Dof
2	1
3	2
4	5
5	14

OBSERVATION:

- Our analysis gives 5 degrees of freedom in D=4, corresponding presumably to a graviton and three scalars.
- The latter is non vanishing for any space-time dimension D, implying that in this case odd-dimensional models are non empty.

Summary SO(N) spinning particle model Gauge fixing Gauge fixed partition function Even N Odd N

Conclusion

Dof(D, N) Pashnev and Sorokin

Dof(D, PS)

Outlook

model

The end

■ We have studied the one-loop quantization of spinning particles with a gauged SO(N) extended supergravity on the worldline, propagating on flat target space

Summary SO(N) spinning particle model Gauge fixing Gauge fixed partition function Even N

Dof(D,N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

 $\mathsf{Odd}\ N$

- We have studied the one-loop quantization of spinning particles with a gauged SO(N) extended supergravity on the worldline, propagating on flat target space
- \blacksquare We have obtained the measure on the moduli space of the SO(N)

Summary SO(N) spinning particle model Gauge fixing Gauge fixed partition function Even N Odd N Dof(D, N)

Pashnev and Sorokin

Dof(D, PS)

Conclusion

Outlook

model

- We have studied the one-loop quantization of spinning particles with a gauged SO(N) extended supergravity on the worldline, propagating on flat target space
- \blacksquare We have obtained the measure on the moduli space of the SO(N)
- and we have used it to compute the propagating physical degrees of freedom

Summary SO(N) spinning particle model Gauge fixing Gauge fixed partition function Even N Odd N Dof(D, N) Pashnev and Sorokin model

Conclusion

Dof(D, PS)

Outlook

- We have studied the one-loop quantization of spinning particles with a gauged SO(N) extended supergravity on the worldline, propagating on flat target space
- \blacksquare We have obtained the measure on the moduli space of the SO(N)
- and we have used it to compute the propagating physical degrees of freedom
- We have also studied the N=4 case with an SU(2) symmetry left as a global one and shown that this propagate 5 degrees of freedom in D=4 corresponding probably to 3 scalars and a spin 2 field

Outlook

Summary SO(N) spinning particle model Gauge fixing Gauge fixed partition function

 $\mathsf{Even}\ N$

 $\mathsf{Odd}\ N$

Dof(D,N)

Pashnev and Sorokin model

Dof(D,PS)

Conclusion

Outlook

The end

■ Would be interesting to study the one-loop partition function of this model coupled to Ads background

Outlook

Summary $SO(N) \ {\rm spinning} \ {\rm particle} \ {\rm model}$

Gauge fixing
Gauge fixed partition

function
Even N

Odd N

Dof(D, N)

Pashnev and Sorokin model

Dof(D, PS)

Conclusion

Outlook

- Would be interesting to study the one-loop partition function of this model coupled to Ads background
- and study from the worldline point of view how one could introduce more general couplings.

Outlook

Summary SO(N) spinning particle model Gauge fixing

Gauge fixed partition function

 $\mathsf{Even}\ N$

 $egin{aligned} \mathsf{Odd} \ N \ Dof(D,N) \end{aligned}$

Pashnev and Sorokin

model Dof(D, PS)

Conclusion

Outlook

- Would be interesting to study the one-loop partition function of this model coupled to Ads background
- and study from the worldline point of view how one could introduce more general couplings.
- One could also enlarge the analysis to osp(2p,Q) spinning particle and try to understand if they are related to partially massless HS in AdS

SO(N) spinning particle model

Gauge fixing

Gauge fixed partition

function

Even N

Odd N

Dof(D, N)

Pashnev and Sorokin

model

Dof(D, PS)

Conclusion

Outlook

The end

THANK YOU FOR YOUR ATTENTION