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ON THE WORLDLINE IN " D" DIMENSION

The action for this models reads

1
| 1
S[CB, 5,G]:/ dr [5 1(:0“— ¢f)2+§¢5(5ij87-—aij)¢ju
0

The N world line supergravity multiplet contains

m the enbein © which gauges
m gravitini which gauges
m gauge field a;; which gauges SO(/N) symmetry

OBJECTIVE: we want to study the partition function on the circle

ZN/ DXDG __ _sx,q]
71 | Vol (Gauge)

3/13



gauge symmetry

4/13




o

£+ 2x€;

gauge symmetry

4/13




dc
gauge symmetry d .

£+ 2xi€;
€ — Qi €5 + OG5 X5

4/13




O = &4 2x;€;
gauge symmetry Oxi = €& —aijej + aqiX;
dai; = 04+ Oimmi + OimGim

4/13




e = E£+42xi€
gauge symmetry o € — Q€5 + QX
0a;; Qi + QimAmsi + OjmAim

We take fermions and gravitino with antiperiodic boundary condition (ABC)

4

gravitinos can be completely gauged away

4/13




e = E£+42xi€
gauge symmetry o € — Q€5 + QX
0a;; Qi + QimAmsi + OjmAim

We take fermions and gravitino with antiperiodic boundary condition (ABC)

4

gravitinos can be completely gauged away

Our gauge choice

4/13




e = E£+42xi€
gauge symmetry o € — Q€5 + QX
0a;; Qi + QimAmsi + OjmAim

We take fermions and gravitino with antiperiodic boundary condition (ABC)

4

gravitinos can be completely gauged away
Our gauge choice
e — B€0,00)

xi — 0
a;j; — &ij (Qk) with 0, € [0,27'(']

4/13




e = E£+42xi€
gauge symmetry o € — Q€5 + QX
0a;; Qi + QimAmsi + OjmAim

We take fermions and gravitino with antiperiodic boundary condition (ABC)

4

gravitinos can be completely gauged away

Our gauge choice

e — [€]0,00)
xi — 0
a;j; — &ij (Qk) with 0, € [0,27'(']

fixes the supergravity multiplet up to some moduli

4/13




Se = £+42ye
gauge symmetry o € — Q€5 + QX
0a;; Qi + QimAmsi + OjmAim

We take fermions and gravitino with antiperiodic boundary condition (ABC)

4

gravitinos can be completely gauged away
Our gauge choice
e — B€0,00)

xi — 0
a;j; — &ij (Qk) with 0, € [0,27'(']

fixes the supergravity multiplet up to some moduli

m  is the usual proper time

4/13



Se = £+42ye
gauge symmetry o € — Q€5 + QX
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We take fermions and gravitino with antiperiodic boundary condition (ABC)

4

gravitinos can be completely gauged away
Our gauge choice
e — [€]0,0)
xi — 0
a;j; — &ij (Qk) with 0, € [0,27'(']
fixes the supergravity multiplet up to some moduli

m  is the usual proper time
m  ;;(0;) is some block diagonal matrix we discuss later
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The gauge fixed partition function reads
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The gauge fixed partition function reads

8
0 (2B) 2

d9k A D_4q A
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i this is a normalization factor we will discuss
later
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The gauge fixed partition function reads

Y
(278)F

d0 D _ .

r\/‘

> determinants of the susy ghosts and Majorana
fermions which all have antiperiodic boundary condi-
tions (ABC) and transform in the vector representation

of SO(N)

5/ 13




The gauge fixed partition function reads

[
(2rB) T

BC

This determinant is due to the ghosts for the SO(N)
gauge symmetry; they transform in the adjoint rep-
resentation and have periodic boundary conditions
(PBC). It's indicated by Det’ because it contains zero
modes we have to exclude from the determinant

Kn H / - Det (8, avec)__l Det’ (9,
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The gauge fixed partition function reads

oo
(2mB) %

2 dt9 R D _ ~
N

THIS LINE COMPUTES THE NUMBER OF DE-
GREES OF FREEDOM (Dof) NORMALIZED TO
ONE FOR A REAL SCALAR FIELD
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Using constant gauge transformations => a;; is block diagonal

0 01 . 0 0
g = : . : : r=— = SO(N) rank
2
0 0o . 0 0,
0 0 . _97" 0

Using large gauge transformation = 60,- ~ 0, + 2mn 0 =angles

A . 0p+06 . 0,—0
Det’ (07 — Gadj) ppe = Hk<l(2 sin %)2(281n k12

D
b Det (87- — &vec)A?B_Cl — H;:1(2 COS %)D_2

2 1
5 Kn=grq

this factor is due to the fact that with a SO(N) transformation one can
permute the angles 6;
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DOf(D)N:2T.) — 27-7_' Hk; 1f ™ k(2COS )D 2

Hk<l [(2603%)2 — (2003%)2]
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r—1
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k=1
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k=1

SPECIAL CASES:

Dof(2,N) = 1, VN
Dof(4,N) = 2, VN
 (2d—-2)!
Dof(2d,2) = TS
2471 (24— 2)!
Dof(2d,3) = T a-D
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by Pashnev and Sorokin, also the model with a factor SU(2) gauged and
the other SU(2) left as a global symmetry has been considered.

Quantization of this model seems to produce an inconsistency:

Dirac operatorial quantization

seems to describe

m three scalar
m aspin 2

Dof(D =4,PS) =5

Gupta Bleuler quantization

seems to describe

m two scalar
m  aspin 2

Dof(D = 4,PS) =4
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In this case the number of degrees of freedom is given by

1 27
Dof(D,PS) = —/
0]

2P=1(2D — 3)!!

— (2cos g)Q(D_z)@ sin 0)? =

2 27 D!

[y

mhwmg
TN

OBSERVATION:

m  Our analysis gives 5 degrees of freedom in D = 4, corresponding
presumably to a graviton and three scalars.

m The latter is non vanishing for any space-time dimension D, implying
that - in this case - odd-dimensional models are non empty.
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We have studied the one-loop quantization of spinning particles with a
gauged SO(N) extended supergravity on the worldline, propagating on
flat target space

We have obtained the measure on the moduli space of the SO(N)

and we have used it to compute the propagating physical degrees of
freedom

We have also studied the N = 4 case with an SU(2) symmetry left as a
global one and shown that this propagate 5 degrees of freedom in

D = 4 corresponding probably to 3 scalars and a spin 2 field
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m  Would be interesting to study the one-loop partition function of this
model coupled to Ads background
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Would be interesting to study the one-loop partition function of this
model coupled to Ads background

and study from the worldline point of view how one could introduce
more general couplings.

One could also enlarge the analysis to osp(2p,Q) spinning particle and
try to understand if they are related to partially massless HS in AdS
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