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There are various type of partition functions for BPS states:

½ BPS states = Chiral Ring
¼ BPS states
Supersymmetric Index

Counting problems in N=1 supersymmetric gauge theory 
are an old and vast subject:

•Study of the moduli space; generators for the chiral
ring and their relations

•Dependence of the partition function on the coupling

•Statistical properties of the BPS states and relation
to black holes entropies



The Chiral Ring

Interest in chiral primary gauge invariant operators:

O 0Qα =

O O (...)Qα+∼

•A product on chiral primaries is defined via OPE

•The set of chiral primaries  form a ring

•Expectation values and correlation functions
do not depend on position.



In supersymmetric gauge theories with chiral matter superfields
X, vector multiplets W and superpotential

n n n
α α βTr (X ),     Tr (X W ),    Tr (X W W )

chiral gauge invariant operators are combinations of

however constrained by

1. Finite N size effects

2. F term relations

N
N+1 i

i
i=1

(X )= c (X )Tr Tr∑

X (X)∂ ∼W  = DD 0

•Classical relations may get quantum corrections
•Appearance of W included in a superfield structure

W



Note: the number of  gauge invariant operators is infinite
However these typically have charges under the global symmetries
and the number of operators with given charge is finite 

GENERAL PROBLEM: count the number of BPS operators 
According to their global charge:

( )kn N = number of BPS operators
with charge k   

( ) ( ) k
N kg a n N a=∑

•a is a chemical potential for global and R charges
•N is the number of colors



For N=4 SYM the problem is very simple:

3 commuting adjoint matrices can be simultaneously
diagonalized: 

g(N) is the generating function for symmetric polynomials
in the eigenvalues

For a generic N=1 gauge theory the problem is hard:

•non trivial F term relations for many fields
•finite N relations 

i3 adjoint fields                   F-terms   [ , ] 0Φ Φ Φ =i j



How to compute gauge invariants and generating functions:

The problem of finding gauge invariants goes back to the 
ninenteenth century. In mathematics this is invariant theory.

•General methods due to Hilbert: free resolutions, syzygies…

•Now algorithmical (Groebner basis)

•With computers and computer algebra programs really computable
(but for small values of N) 

•Still very hard to get general formulae for generic N

ij ij ij ijN N matrices X                             R[X ] [X ]/{ W(X ) 0}× = ∂ =^

INV
ijR R[X ] // G=



The problem drastically simplifies for the class of 
superconformal gauge theories with AdS dual:

• D3 branes probing Calabi-Yau conical singularities

• Four dimensional CFTs on the worldvolume

Connection provided by the AdS/CFT correspondence

5AdS H×



D3 branes probing a conical Calabi-Yau with base H:

The near horizon geometry is 

The worldvolume theory is a 4d conformal 
gauge theory

5AdS H×

CY condition implies that H is Sasaki-Einstein.

Few metrics known  (                                            )

Many interesting question solved without knowledge of the metric

5 1,1 , , ,, , ,p q p q rH S T Y L=



EXAMPLES:

N=4 SYM

Conifold1 ,1C (T )

3 5C =C(S )

ij pq i p j qW A B A Bε ε=

A

B



3
3/C Z Orbifold

Projection
Of N=4 SYM

152( )C L

U V

W ijk i j kW U V Wε=

...W =



General properties:

•SU(N) gauge groups

•adjoints or bi-fundamental fields

•superpotential terms = closed loops in the quiver

•An infinite class of superconformal theories that
generalize abelian orbifolds of N=4 SYM



General properties:

•The moduli space of the U(1) theory is the CY

•The moduli space of the U(N) theory is the 
symmetrized product of N copies of the CY:

•The fact that the gauge group is SU(N) implies
the existence of baryons in the spectrum

N branes:



Classification in terms of global charges:

Non anomalous abelian symmetries in the CFT:

• r flavors (R) symmetries

• s baryonic symmetries

General properties:

• CY isometries

• RR fields 

r = 1,2,3
r is at least 1     
r=3                        

R symmetry
3 isometries=toric CY



DIGRESSION:

Correspondence between CY and CFT

Comparison with predictions of  the AdS/CFT

•Connections to dimers:  (Okunkov,Nekrasov,Vafa – Hanany,Kennaway) 

•Geometric computation without metric (Martelli,Sparks,Yau)

•AdS/CFT, combinatorics, a-maximization



152L

Connection to dimers:
Okounkov,Nekrasov,Vafa – Franco,Kennaway,Hanany,Vegh,Wecht
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2 1YdelPezzo 1 =

Dimers, combinatorics and charges:
Hanany-Witten construction for local CY



Central charge of the CFT determined by combinatorial data:

Butti,Zaffaroni
Benvenuti,Pando-Zayas,Tachikawa
Lee,Rey

3
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Connection to a-maximization:

Thanks to a-maximization (Intriligator,Wecht) the exact R-charge of 
the CFT  is obtained by maximizing a



The BPS spectrum of states: the N=1 chiral ring

Mesonic operators:

Baryonic operators:

nTr(AB)

Det(A)  Det(B)

All gauge invariant single and multi trace operators subject to F term 
conditions:

Tr( )kΦ

N=4

Conifold

Conifold

[ , ] 0i jΦ Φ =

N=4

i p j j p iA  B  A =A  B  A

Consider the cases:



Warming up: N4 SYM

Focus on single trace operators: 1 2 3Tr( )n m pΦ Φ Φ

Generating function: 1
1 2 3

1( )
(1 )(1 )(1 )

g q
q q q

=
− − −

1 1             qΦ

2 2             qΦ

3 3             qΦ

[ , ] 0i jΦ Φ =



Warming up: the conifold

Focus on single trace operators:

Generating function:

i p j j p iA  B  A =A  B  A

1 1 k ki j i j(A B ...A B )Tr

i 1A                    t

i 2B                    t

2
1 1 2 1 2

1
( , ) ( 1) n n

n
g t t n t t

∞

=

= +∑



Not the smart way of computing:

Two equivalent moduli space parameterizations:

•VEV  of elementary fields (modulo complexified gauge transformations)

•Chiral gauge invariant operators:

set of holomorphic functions on the moduli space (CY).

Moduli space                     D3 branes CY



Example: N4 SYM

Holomorphic functions on      : 1 2 3
n m pz z z 1 2 3Tr( )n m pΦ Φ Φ

Generating function:

3C

1
1 2 3

1( )
(1 )(1 )(1 )

g q
q q q

=
− − −

Mesonic operators have zero baryonic charge: only 3 independent charges q

1q
2q

3q



Toric Calabi-Yau:

Obtained by gluing copies of 3C

1
1 2 3

1( )
(1 )(1 )(1 )

I I In m p
I

g q
q q q

=
− − −

∑

CONIFOLD

[Martelli,Sparks,Yau]



Mesonic operators:

Single traces = holomorphic function on the CY
index theorem(Martelli,Sparks,Yau)

Multi traces = for N colors, holomorphic functions on 
the symmetric product  
(Benvenuti,Feng,Hanany,He)

NSym(CY)

Full set of operators and their dual interpretation

Baryonic operators:
Determinants = operators with large dimension (N) 

Bulk KK states in ADS: gravitons and multigravitons

Solitonic states in AdS: D3 branes wrapped on 3 cycles



Subtelties also for mesons:

Mesonic operators in the bulk are KK states 

Dimension of order N • Giant gravitons

• D3 wrapping trivial 3 cycles

• stabilized by rotation

N
N+1 i

i
i=1

 (X )= c (X )Tr Tr∑



QUANTIZING SUPERSYMMETRIC D3 BRANE STATES

1. It contains at once all BPS states
2. It allows a strong coupling computation (AdS/CFT)

Consider a D3 brane wrapped on a 3 cycle in H, including excited states, 
possibly non static

•Branes on trivial cycles stabilized by flux+rotation
=Giant Gravitons                               mesons

•Branes on non-trivial cycles, possibly excited and
non static                                           baryons



SUPERSYMMETRIC CLASSICAL D3 BRANES 
CONFIGURATIONS

D3 brane on cycle     in H:              Divisor C(    ) in the CY

it wraps                                           it wraps  

Σ

(Σ,r)(Σ,t)

Σ

(rotating t to r in AdS) Σ
H

SUPERSYMMETRIC
D3 BRANE           = holomorphic surface in CY



Translation to geometrical problem:

count all holomorphic surfaces in a given equivalence class of divisors:

An holomorphic surface is locally written as an equation in suitable
complex variables

•Mesons: trivial divisor
zero locus of holomorphic functions 

•Baryons: non trivial divisors
sections of suitable line bundles 
baryonic charge B=degree of the line bundle

n m p
i nmp 1 2 3P(z )= a z z z∑

0
iP(z ) H (X,O(B))∈



Computing the generating function for BPS D3 brane states:

1,
1 2 3

( )
(1 )(1 )(1 )

I

I I I

q

B n m p
I

qg q
q q q

=
− − −

∑

CONIFOLD

Classical BPS D3 brane states identified with holomorphic surfaces
of class B (line bundle sections), computed using index theorem



, 1,1
( ) ( ( ) / )N k k

B N Bk
g q Exp g q kυ υ

=
=∑ ∑

QUANTIZATION OF THE CLASSICAL CONFIGURATION
SPACE OF SUPERSYMMETRIC D3 BRANES

(counts symmetrized products)

Also known as pletystic exponential

Done with geometric quantization [Beasley]:

Full Hilbert space at fixed baryonic charge B obtained from 
N=1 result by taking N-fold symmetrized products of sections

1 2 N| P ,P ,...,P >0
iP H (X,O(B))∈



Count symmetrized products of elements P  in a set S 
with generating function  

1( ) n

n S
g q q

∈

=∑

1

1( , ) ( )
(1 )

N
Nn

N
n S

g q g q
q

υ υ
υ =

∈

= =
− ∑∏

Introduce a new parameter: υ

1
1 1

( log(1 )) ( / ) ( ( ) / )n k kn k k

n S k n S k

Exp q Exp q k Exp g q kυ υ υ
∞ ∞

∈ = ∈ =

− = =∑ ∑ ∑ ∑



Example: the conifold

Geometry: the conifold can be written as a quotient: four 
complex  variables modded by a complex rescaling 

1 1 2 2 3 3 4 4,       ( , / , , / )x x x x x x x xλ λ λ λ λ∈^ ∼ ∼ ∼ ∼

Similar to projective space.
Homogeneous coordinates exist for all toric manifold
Holomorphic surfaces can be written as

charges (1,-1,1,-1)

1 4P ( , . . . , ) 0x x =

*



Example: the conifold

Field Theory: four charges, one R, two flavors, one baryonic

3x
1x

2x
4x

Homogeneous rescaling =  baryon number



Mesonic operators (charge B=0)

counts operators 

counts multitraces

with charge t1 for A and t2 for B

(m+1,m+1)

1 2 3 4P( ) ....ix x x x x= + +

1, 0 ( )Bg q= 1 1 m mi j i jTr (A B ....A B )

2
1, 0 1 2 1 2

0
( , ) ( 1) m m

B
m

g t t m t t=
=

= +∑

, 0 ( )N Bg q=

k mTr(AB) ....Tr(AB)



Baryonic operators at charge B=1

2
1 3 1 2P( ) ....ix x x x x= + + +

1, ( )Bg q = counts operators 

, ( )N Bg q counts determinants 

with charge t1 for A and t2 for B 1, 1 1 2 1 2
0

( , ) ( 1)( 2) m m
B

m
g t t m m t t=

=

= + +∑
(m+2,m+1)



Comments:

Not all baryonic operators are factorizables as:

Det (A) Mesons×

For example there are 2(N-1) non factorizable
components of:

Det(ABA,A,....,A)



Full partition function for the conifold

N=1

Finite N:

Checked against explicit computation for N=2,3.



Structure of the partition function:

N=2: 10 generators (with relations): 

i jDet(A)=εεA A Det(B) Tr(AB)
3 3 4

General N: • (N+1,1)   generators        Det(A)

• (1,N+1)   generators        Det(B)                  

• (n,n)     generators        Tr(AB)          n=1,…,N-1

• 2(N-1)   generators       

• ...      other non factorizable baryons

n

Det(ABA,A,....,A)



Comments I

•N=1 result decomposes in sectors with fixed baryonic
charge B

•The finite N result for baryonic charge B is obtained by
PE (symmetrized products) from N=1 result

•The full partition function for finite N is obtained by
resumming the contribution of fixed baryonic charge 

A general lesson on the structure of BPS partition functions:

Similar analysis can be done for other CY:



Comments II

•½ BPS partition functions seem  independent of the 
coupling constant: strongly coupled AdS/CFT computation 
agrees with weakly coupling analysis

•Relation of baryonic charge sectors with discretized Kahler
moduli of the geometry 

•Similarity of results with topological strings/Nekrasov
partition functions



CONCLUSION

Intriguing interplay between geometry and QFT

• AdS/CFT: index  theorem and localization
• QFT computation: invariant theory

Other interesting questions:

• Partition functions for general CY
• Index and ¼ BPS states
• Non CY vacua
• Termodinamic properties of partition functions



APPENDIX: TORIC CY 43

Geometrically: toric cones are torus fibrations over 3d cones.

Toric case is simpler:

3(1)U

2(1)U

(1)U



APPENDIX: TORIC CY 44

All information on toric CY: convex polygon with integer vertices.

Conifold toric diagram



APPENDIX: TORIC CY 45

21Y
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Global charges and geometry:

d = number of vertices
d-3 three cycles  

There are d abelian symmetries in the CFT:

• 1 R symmetry
• 2 flavor symmetries

• d-3 baryonic symmetries

isometries

reduction of RR potentials
on the d-3  3-cycles

1
2

3

d

…



APPENDIX: TORIC CY 47

Gauge theory: constraints on number of fields:

Toric case is simpler:

G + V = F

G = number gauge groups
F = number of fields
V = number of superpotential terms

Conformal invariance requires linear conditions on R-charges

G beta functions conditions  
V superpotential conditions for F=V+F fields

IR fixed point



APPENDIX: TORIC CY 48

Comment:

Conformal invariance conditions have d-1 independent
solutions

d-1=number of global non anomalous abelian charges

R charges of the F elementary fields can be 
expressed in terms of d charges with  

ia i=1,…,d

Global charges are associated 
with vertices

1
2

d

i
i

a
=

=∑
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Four charges: one R, two flavors,                           three isometries
one baryonic                            RR 4-form on 3-cycle

Example: conifold

d=4 vertices
d-3=1 three cycles
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Example: conifold

A

B

1 2
1

[Franco-Hanany-Kennaway-Vegh-Wecht]
[Feng-He-Kennaway-Vafa]

1

1

11

1

2

2

2

2
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Example: conifold

A

B

1 2
11

1

11

1

2

2

2

2



APPENDIX: TORIC CY 52

Example: conifold

A

B

1 2

1

1 1

12

2 21

2
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Example: conifold

A

B

1 2
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zig zag path

3a

Example: conifold

Global charges are associated 
with vertices
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The full multitrace contribution for N colors is given in terms of the result 
for N=1:

Known also as the pletystic exponential

(counts symmetrized products)

is the generating function
for holomorphic functions

11
( ) ( ( ) / )N k k

N k
g q Exp g q kυ υ

=
=∑ ∑

1( )g q

[Benvenuti,Feng,Hanany,He]

NHolomorphic Functions  on (Sym(CY) )N branes


