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Counting problems in N=1 supersymmetric gauge theory
are an old and vast subject:

There are various type of partition functions for BPS states:
Y2 BPS states = Chiral Ring

Y4 BPS states
Supersymmetric Index

«Study of the moduli space; generators for the chiral
ring and their relations

*Dependence of the partition function on the coupling

eStatistical properties of the BPS states and relation
to black holes entropies



The Chiral Ring

Interest in chiral primary gauge invariant operators:
QO0=0
0~0+Q(...

A product on chiral primaries is defined via OPE
*The set of chiral primaries form a ring

*Expectation values and correlation functions
do not depend on position.



In supersymmetric gauge theories with chiral matter superfields
X, vector multiplets W and superpotential ¥/

chiral gauge invariant operators are combinations of
Tr(X"), Tr(X"W,), Tr(X"W,W;)
however constrained by

. . N .
1. Finite N size effects Tr (XNH):Z cTr(X)
=1

2. F term relations

0, W =DD(X)~ 0

«Classical relations may get quantum corrections
*Appearance of W included in a superfield structure



GENERAL PROBLEM: count the number of BPS operators
According to their global charge:

gy (@) =) n(N)"

nk ( N) = number of BPS operators
with charge k

a Is a chemical potential for global and R charges
*N is the number of colors

Note: the number of gauge invariant operators is infinite
However these typically have charges under the global symmetries
and the number of operators with given charge is finite



For N=4 SYM the problem is very simple:
3 adjoint fields @, F-terms [®;,®,]=0

3 commuting adjoint matrices can be simultaneously
diagonalized:

g(N) is the generating function for symmetric polynomials
In the eigenvalues

For a generic N=1 gauge theory the problem is hard:

enon trivial F term relations for many fields
finite N relations



How to compute gauge invariants and generating functions:

The problem of finding gauge invariants goes back to the
ninenteenth century. In mathematics this is invariant theory.

NXN matrices X, R[X,]=C[X,]/{oW(X,) =0}
INV __
R™ =R[X,]/ G
*General methods due to Hilbert: free resolutions, syzygies...

*Now algorithmical (Groebner basis)

*With computers and computer algebra programs really computable
(but for small values of N)

Still very hard to get general formulae for generic N



The problem drastically simplifies for the class of
superconformal gauge theories with AdS dual:

AdS, x H

« D3 branes probing Calabi-Yau conical singularities

e Four dimensional CFTs on the worldvolume

Connection provided by the AdS/CFT correspondence



D3 branes probing a conical Calabi-Yau with base H:

The near horizon geometry is ~ AdS, x H

The worldvolume theory is a 4d conformal
gauge theory

CY condition implies that H is Sasaki-Einstein.

Few metrics known (H =S T YP9 LP%")

Many interesting question solved without knowledge of the metric



EXAMPLES:

N=4 SYM

) Conifold

W=g;e, AB,AB,



c’/z,

C(L152)

U v Orbifold
Projection
Of N=4 SYM

W =g, UV.W




General properties:

*SU(N) gauge groups
eadjoints or bi-fundamental fields
ssuperpotential terms = closed loops in the quiver

*An infinite class of superconformal theories that
generalize abelian orbifolds of N=4 SYM



General properties:

*The moduli space of the U(1) theory is the CY

*The moduli space of the U(N) theory is the
symmetrized product of N copies of the CY:

N branes: © o

*The fact that the gauge group is SU(N) implies
the existence of baryons in the spectrum



General properties:

Classification in terms of global charges:

Non anomalous abelian symmetries in the CFT-:

o r flavors (R) symmetries o CY isometries
* S baryonic symmetries  RRfields
r=1,2,3

ris atleast 1 —————— R symmetry
r=3 ————— 3 Isometries=toric CY



DIGRESSION:

Correspondence between CY and CFT

Comparison with predictions of the AdS/CFT

*Connections to dimers: (Okunkov,Nekrasov,Vafa — Hanany,Kennaway)
*Geometric computation without metric (Martelli,Sparks,Yau)

*AdS/CFT, combinatorics, a-maximization



Connection to dimers:

Okounkov,Nekrasov,Vafa — Franco,Kennaway,Hanany,Vegh,Wecht
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Dimers, combinatorics and charges:

Hanany-Witten construction for local CY




Connection to a-maximization:

Central charge of the CFT determined by combinatorial data:

a:%Tr R = Z|< Vi, V., V., >aaa,
1, ].K

d

> a =2

=1

Butti,Zaffaroni
Benvenuti,Pando-Zayas, Tachikawa

Lee,Rey

Thanks to a-maximization (Intriligator,Wecht) the exact R-charge of
the CFT is obtained by maximizing a



The BPS spectrum of states: the N=1 chiral ring

Consider the cases: N=4 Conifold
Mesonic operators: Tr(®") Tr(AB)"
Baryonic operators: Det(A) Det(B)

All gauge invariant single and multi trace operators subject to F term
conditions:

N=4 [®;, P, [=0

Conifold Ai Bp Aj:Aj Bp Ai



Warming up: N4 SYM

Focus on single trace operators: > Tr(DDJDy)
[(Di ) (I)j ] =0
O, ——> q,
e, —> q,

(I)3 |:>q3

1
(1-qXi-qXi-q)

Generating function: g(q):



Warming up: the conifold

Focus on single trace operators: ~ ——> |IT (Aille "'AikBjk)

A, B, A=A B, A o

B, —> t,

Generating function: g,(t,t,) = Z (N+1)°t't;
n=1



Not the smart way of computing:

D3 branes —— CY

Moduli space

Two equivalent moduli space parameterizations:
*VEV of elementary fields (modulo complexified gauge transformations)

*Chiral gauge invariant operators:

|

set of holomorphic functions on the moduli space (CY).



Example: N4 SYM
Holomorphic functions on C : ZanZngp ——> Tr(®/0;D;)

1
(1-qXi-qX1-q)

Generating function: Q(CI):

/

Mesonic operators have zero baryonic charge: only 3 independent charges g




Toric Calabi-Yau:

Obtained by gluing copies of C>

1
gl(q): | | |
Z':(l_chn )(l_qzm )(1_q3p )

(0,—1.1)
Vy=(0,1,1) Vo=(1,1.1)
X3 X2
(1,0,0)
CONIFOLD
(—1,0,1)
X4 X
V,=(0.0,1) V,=(1,0,1)

(0,1.07)

[Martelli,Sparks,Yaul]



Full set of operators and their dual interpretation

Mesonic operators:

Single traces = holomorphic function on the CY o
index theorem(Martelli,Sparks,Yau)

Multi traces = for N colors, holomorphic functions on
the symmetric product Sym(CY)"
(Benvenuti,Feng,Hanany,He)

Bulk KK states in ADS: gravitons and multigravitons

Baryonic operators:

Determinants = operators with large dimension (N)

Solitonic states in AdS: D3 branes wrapped on 3 cycles



Subtelties also for mesons:

Mesonic operators in the bulk are KK states

Dimension of order N ——> « Giant gravitons

P . « D3 wrapping trivial 3 cycles
Tr (XM=Y e Tr(X) PPITS Y
i=1

 stabilized by rotation



QUANTIZING SUPERSYMMETRIC D3 BRANE STATES

1. It contains at once all BPS states
2. It allows a strong coupling computation (AdS/CFT)

Consider a D3 brane wrapped on a 3 cycle in H, including excited states,
possibly non static

*Branes on trivial cycles stabilized by flux+rotation
=Glant Gravitons > mesons

*Branes on non-trivial cycles, possibly excited and
non static —— baryons



SUPERSYMMETRIC CLASSICAL D3 BRANES
CONFIGURATIONS

D3 brane on cycle X in H: Divisor C(X ) inthe CY

it wraps (2,t) — itwraps (Z,r)
(rotating t to r in AdS)

)
(/4 H

SUPERSYMMETRIC
D3 BRANE = holomorphic surface in CY



Translation to geometrical problem:

count all holomorphic surfaces in a given equivalence class of divisors:
An holomorphic surface is locally written as an equation in suitable
complex variables

Mesons: ——> trivial divisor
zero locus of holomorphic functions

P(Zi ):Z anmpz?zr;zg

eBaryons: ——> non trivial divisors
sections of suitable line bundles
baryonic charge B=degree of the line bundle

P(z.)e H’(X,0(B))



Computing the generating function for BPS D3 brane states:

Classical BPS D3 brane states identified with holomorphic surfaces
of class B (line bundle sections), computed using index theorem

qq
g1B(q): E , | | i
| ' (1_q1n )(l_qzm )(l_qsp )

(0,—1.1)
V=(0,1,1) Vo=(1,1,1)

X3 X7 (0.,0.0)

CONIFOLD (1.0,0)

(—1,0.1)

Xy X (—B.B.0)
V,=(0.0,1) v, =(1,0,1)
{0.1.0})



QUANTIZATION OF THE CLASSICAL CONFIGURATION
SPACE OF SUPERSYMMETRIC D3 BRANES

Done with geometric quantization [Beasley]:

Full Hilbert space at fixed baryonic charge B obtained from
N=1 result by taking N-fold symmetrized products of sections

P, € H’(X,0(B)) | PPy, Py >

> 0V ge (@) =Exp(>.  9,5(q)" /1K)

(counts symmetrized products)

Also known as pletystic exponential



Count symmetrized products of elements P inaset S
with generating function

g(@=> 0"

neS

Introduce a new parameter: V

1 N
g(qav)_ H(I—an) T . lv gN(q)

|

Exp(Zlog(l uq")) = Exp(Z > 0"/ k) = Exp(Z g,(q“)v"/k)

k=1 neS




Example: the conifold

Geometry: the conifold can be written as a quotient: four
complex variables modded by a complex rescaling

AeC, (X ~XA,X ~X /A% ~ XA, X, ~X, /)

charges (1,-1,1,-1)

Similar to projective space.
Homogeneous coordinates exist for all toric manifold
Holomorphic surfaces can be written as

P(X,,....x,) =20




Example: the conifold

Field Theory: four charges, one R, two flavors, one baryonic

SU(2J1 SU(QJQ f( LR U(l ) B

71 mi | J2 mo
Al 2 +5]10 0 I X
4. i —i 0 0 i X;
By |l 0 0 é +$ ; -1 X,

Homogeneous rescaling = baryon number



Mesonic operators (charge B=0)
P(X)=XX, + XX, +....

0,5-(0) counts operators Tr (Aille....Ai B.)

m  Jm

(m+1,m+1)

. 2¢4Mgem
with charge t1 for A and t2 for B gl,B:O (t19t2) - Z (m + 1) t1 tz
m=0

ON B-0 (Q) counts multitraces

Tr(AB)"....Tr(AB)"




Baryonic operators at charge B=1
P(X)=X+X + XX, +....

gLB(q) = countsoperators Ar.;=A; B; ...A; Bj A

L '?m—l—l

(m+2,m+1)

with charge t1 for A and t2 for B gl,le (tlatz) = Z (m'l' 1)(m+ z)tlmtzm

Oy B(CI) counts determinants

| I N
6;1 j?xFZI (411 ‘Tl) (4171 JN )?:




Comments:

Not all baryonic operators are factorizables as:

Det (A) xMesons

For example there are 2(N-1) non factorizable
components of:

Det(ABALA,....,A)



Full partition function for the conifold

1
N=1 Ql(tb‘lycj = - - '
(1—thx)(1 — &)1 - )1 - %)

by

gi(t.b.x,y;C) = > b1 p(t,a,y:C)
B=—~c

Finite N:

S . - =7
Z N gn.p({t: 1 CY) = Z LE exp (Z TQIB({&} C;’Y))

N =0) B=—w k=1

Checked against explicit computation for N=2,3.



Structure of the partition function:

N=2: 10 generators (with relations):

Det(A)=eeA;A;  Det(B)
3 3

General N: e (N+1,1) generators
* (1,N+1) generators
e (n,n) generators

« 2(N-1) generators

Tr(AB)
4

Det(A)

Det(B)

TH(AB)  n=1,...

Det(ABALA,....,A)

. ... other non factorizable baryons

,N-1



Comments |

Similar analysis can be done for other CY:

A general lesson on the structure of BPS partition functions:
*N=1 result decomposes in sectors with fixed baryonic
charge B

*The finite N result for baryonic charge B is obtained by
PE (symmetrized products) from N=1 result

*The full partition function for finite N is obtained by
resumming the contribution of fixed baryonic charge



Comments |l

2 BPS partition functions seem independent of the

coupling constant: strongly coupled AdS/CFT computation
agrees with weakly coupling analysis

*Relation of baryonic charge sectors with discretized Kahler
moduli of the geometry

eSimilarity of results with topological strings/Nekrasov
partition functions



CONCLUSION

Intriguing interplay between geometry and QFT

« AdS/CFT: index theorem and localization
e QFT computation: invariant theory

Other interesting questions:

 Partition functions for general CY

 Index and ¥4 BPS states

 Non CY vacua

* Termodinamic properties of partition functions



Toric case Is simpler:

Geometrically: toric cones are torus fibrations over 3d cones.

U (1)

APPENDIX: TORIC CY 43



All information on toric CY: convex polygon with integer vertices.

(0.0.1) |

Conifold toric diagram

APPENDIX: TORIC CY 44
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L=2)" (q WEB

DIMER MODEL Y21 TORIC DIAGRAM

APPENDIX: TORIC CY 45



Global charges and geometry:

There are d abelian symmetries in the CFT:

« 1 R symmetry isometries
o 2 flavor symmetries

reduction of RR potentials

* d-3 baryonic symmetries on the d-3 3-cycles

1

d = number of vertices
d-3 three cycles d

APPENDIX: TORIC CY 46



Toric case Is simpler:

Gauge theory: constraints on number of fields:

G+V=F

G = number gauge groups
F = number of fields
V = number of superpotential terms

Conformal invariance requires linear conditions on R-charges

G beta functions conditions

=+ I
V superpotential conditions for F=V+F fields

— IR fixed point
APPENDIX: TORIC CY 47



Comment:

Conformal invariance conditions have d-1 independent
solutions

d-1=number of global non anomalous abelian charges

R charges of the F elementary fields can be
expressed in terms of d charges with », a =2

a i=1,...,d

Global charges are associated
with vertices

APPENDIX: TORIC CY 48



Example: conifold

d=4 vertices
d-3=1 three cycles

Four charges: one R, two flavors, three isometries
one baryonic RR 4-form on 3-cycle
SU(2), | SU2), [UMr 1 U()p
71 m1 | J2 mo
Ar |l 3 430 0 5
A. 1 _ 1 ' ' i
Ao 2 > 0 0 f
Bs 0 0 5 —5 5 -1

APPENDIX: TORIC CY 49



Example: conifold
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[Franco-Hanany-Kennaway-Vegh-Wecht]
[Feng-He-Kennaway-Vafa]

APPENDIX: TORIC CY 50



Example: conifold
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Example: conifold
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Example: conifold

RN
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APPENDIX: TORIC CY
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Example: conifold

® O L
( ( By, | g4,
@ ® Q A, ’ll. L’ B,
O G o

zig zag path

Global charges are associated
with vertices

APPENDIX: TORIC CY 54



The full multitrace contribution for N colors is given in terms of the result
for N=1.

N branes — Holomorphic Functions on (Sym(CY)N)
© o
S > v gy (@ =Exp(D>_, _ 9,(g)v" /k)

(counts symmetrized products)

Known also as the pletystic exponential
g (CI) IS the generating function
1 for holomorphic functions

[Benvenuti,Feng,Hanany,He]

APPENDIX: TORIC CY 55



