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Outline of the presentation

• Concepts of complex systems and information theory

• Transfer Entropy as a way to measure the direction of the 
information flow

• Cluster Index: identifying significant groups of dynamic 
variables

• Examples and simulations

• Conclusions and questions!
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Complex systems study
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• Dynamical complex system as a 
collection of variables evolving in 
time

• We know nothing about the 
variables

• We can observe how the system 
evolves

• We want to understand which 
variables are more important



Information flow: applications

• Studying the directionality of information flow is of great importance 
in many different fields

• Economics

• Genetics

• Neuroscience

• Industrial processes
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Importance of the directionality

• Correlation and mutual 
information are symmetric 
quantities

• Inadequate to study the 
directionality of the information 
flow.

• This directionality can be of great 
importance in neuroscience
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Ito, Shinya, et al. "Extending transfer entropy improves 

identification of effective connectivity in a spiking cortical 

network model." PloS one 6.11 (2011): e27431.



Transfer entropy: definition

• Shannon entropy:

𝐻𝐼 = −෍
𝑖∈𝐼
𝑃 𝑖 log2 𝑃 𝑖 𝐻𝐼|𝐽= −෍

𝑖∈𝐼,𝑗∈𝐽
𝑃(𝑖, 𝑗) log2 𝑃 𝑖 𝑗

• Measures the average number of bits that need to be used to encode 
independent draws of the discrete variable I, following a probability 
distribution 𝑃 𝑖
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Transfer entropy: definition

• Kullback-Leibler divergence:

𝐾𝐼 = −෍
𝑖∈𝐼

𝑃 𝑖 log2
𝑄 𝑖

𝑃 𝑖
𝐾𝐼|𝐽= −෍

𝑖∈𝐼,𝑗∈𝐽
𝑃(𝑖, 𝑗) log2

𝑄 𝑖|𝑗

𝑃 𝑖|𝑗

• Measures the loss of information when the distribution Q is used to 
approximate distribution P

• It is the excess number of bits necessary to encode 𝑃 𝑖 with 𝑄 𝑖

7



Transfer entropy: definition
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• Transfer entropy:

𝑇𝐸 𝑌 → 𝑋 = information lost using

𝑃 𝑥𝑛+1|𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑘+1 to approximate 

𝑃 𝑥𝑛+1|𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑘+1, 𝑦𝑛

• Transfer entropy:

𝑇𝐸 𝑌 → 𝑋 = −෍𝑃(𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑘+1, 𝑦𝑛)log2
𝑃(𝑥𝑛+1|𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑘+1)

𝑃(𝑥𝑛+1|𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑘+1, 𝑦𝑛)

Schreiber, Thomas. "Measuring information 

transfer." Physical review letters 85.2 (2000): 461.



Characteristics of Transfer Entropy

𝑇𝐸 𝑌 → 𝑋 = −෍𝑃(𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑘+1, 𝑦𝑛)log2
𝑃(𝑥𝑛+1|𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑘+1)

𝑃(𝑥𝑛+1|𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑘+1, 𝑦𝑛)

• When 𝑦𝑛 has no influence over 𝑥𝑛+1: 𝑇𝐸 𝑌 → 𝑋 = 0

• Transfer entropy is asymmetric: 𝑇𝐸 𝑌 → 𝑋 ≠ 𝑇𝐸 𝑋 → 𝑌

• Different from the more widely known mutual information:

𝑀𝑋,𝑌 = −෍
𝑥,𝑦

𝑃 𝑥, 𝑦 log2
𝑃 𝑥, 𝑦

𝑃 𝑥 𝑃 𝑦

• This allows to capture the directionality of the information flow
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Finding clusters: Cluster Index

• Integration:

𝐼 𝑆 = ෍
𝑗∈𝑆

𝐻𝑥𝑗 −𝐻𝑆

• Cluster Index:

𝐶𝐼 𝑆 =
𝐼(𝑆)

𝑀𝑆, 𝑈−𝑆
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Simulations
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Node(t+1) Case 1 Case 2

N01 Random Random

N02 Random Random

N03 N04 ⨁ N05 N10 ∧ (N04 ⨁ N05)

N04 N03 ⨁ N05 N03 ⨁ N05

N05 N03 ⨁ N04 N03 ⨁ N04

N06 Random Random

N07 Random Random

N08 N05 ∧ (N09 ⨁ N10) N05 ∧ (N09 ⨁ N10)

N09 N08 ⨁ N10 N08 ⨁ N10

N10 N08 ⨁ N09 N08 ⨁ N09

N11 Random Random

N12 Random Random
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∧ : AND

⨁ : XOR

Case 1

Case 2



Cluster Index: case 1

Position Group

1 8 | 9 | 10

2 3 | 4 | 5

3 9 | 10

4 3 | 4 | 5 | 8

5 4 | 5
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• CI depends on group dimensions, therefore it must be normalized 
with reference to a “homogeneous system”

• Different kind of normalization yielded the same results



Transfer Entropy: case 1

3 | 4 | 5 8 | 9 | 10 4 | 5 9 | 10

3 | 4 | 5 0.00 0.22 0.12 0.40

8 | 9 | 10 0.00 0.00 0.03 0.69

4 | 5 0.00 0.22 0.00 0.38

9 | 10 0.00 0.00 0.00 0.00
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𝑇𝐸(𝑟𝑜𝑤 → 𝑐𝑜𝑙𝑢𝑚𝑛)

• TE depends on group dimensions too

• More reliable figures may be found with a statistical significance test



Transfer entropy: significance test

Several homogeneous systems are 
created and the TEs between the 
groups of interests are computed 
on them
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Cluster Index: case 2

Position Group

1 9 | 10

2 4 | 5

3 8 | 9 | 10

4 3 | 4 | 5

5 3 | 9 | 10
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• The largest groups are identified

• Smaller ones (4 | 5 and 9 | 10) seem to 
be more tightly bound



Transfer Entropy: case 2

3 | 4 | 5 8 | 9 | 10 4 | 5 9 | 10

3 | 4 | 5 0.00 0.79 0.85 0.16

8 | 9 | 10 0.79 0.00 0.14 0.84

4 | 5 0.00 0.75 0.00 0.65

9 | 10 0.78 0.00 0.58 0.00
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𝑇𝐸(𝑟𝑜𝑤 → 𝑐𝑜𝑙𝑢𝑚𝑛)
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Conclusions

• Cluster Index and Transfer Entropy form a powerful combination that 
allows to investigate the hierarchy and the dynamics of a complex 
system

• They are not model-dependent, thus they can be applied to a wide 
range of fields

• Drawbacks:
• Not quantitative enough (too dependent on cluster size)

• Very high computational complexity
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Case studies

• Now let’s see if TE works in real life 
too!

• I will present two studies in two 
different fields

• Finance: study of information flow 
between stock indices

• Neuroscience: Transfer Entropy as a 
measure of connectivity in the brain
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Case study: Finance

• The information flow between the 
biggest stock indices has been 
analyzed

• Indices were grouped in regions: 
Europe, Asia and America

• Daily return was used as the variable 
associated to the indices

• Return values were discretized in 
three levels
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Kwon, Okyu, and J-S. Yang. "Information flow between stock indices." EPL (Europhysics Letters) 82.6 (2008): 68003.

𝑇𝐸 𝑌 → 𝑋 = −෍𝑃(𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑘+1, 𝑦𝑛)log2
𝑃(𝑥𝑛+1|𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑘+1)

𝑃(𝑥𝑛+1|𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑘+1, 𝑦𝑛)
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Case study: Neuroscience

• The study analyzes time series from 
simulations and  EEG and MEG data on 
simple motor tasks

• Neural data present various difficulties:

• The same signal can be picked up by 
different sensors at different times

• Data are continuous and single signals 
are spread over time

• The time delay with which information is 
transferred can vary significantly (1-100 
ms)

• Even in this complex environment, TE 
can detect connectivity between brain 
regions, while other methods fail
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Vicente, Raul, et al. "Transfer entropy—a model-free measure of effective connectivity for the 

neurosciences." Journal of computational neuroscience 30.1 (2011): 45-67.


