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The problem of renormalizability in QG

QED
Aµ

Fµν = ∂µAν − ∂νAµ

L = −1

4
F 2
µν+ψ̄(i/∂−e /A−m)ψ, α =

e2

4π

LR = −1

4
F ′2µν + ψ̄′(i/∂ − e′ /A′ −m′)ψ′,

Quantum Gravity
gµν

Rµνρσ ' ∂∂g + ∂g∂g + . . .

L = − 1

2κ2

√
−gR, κ2 = 8πG

LR = − 1

2κ2

√
−g
[
R+ c1R

2 + c2RµνR
µν

+c3R
µν
ρσR

ρσ
αβR

αβ
µν + . . .︸︷︷︸

∞

]
.

In QG renormalization generates an infinite number of new counterterms.
A high-energy modification of the theory is necessary.
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Higher-derivative quantum gravity

Stelle theory provides a renormalizable model of quantum gravity

SHD = − 1

2κ2

∫
d4x
√
−g
[
R+ αRµνR

µν + βR2].

• Propagator falls off ∼ 1/p4 in the UV ⇒ improves the convergence;

• States with negative probability (ghosts) ⇒ violates unitarity.
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Unitarity

S†S = 1

−i(T− T†) = T†T, S = 1 + iT;

ImT =
1

2
T†T.

IDEA: Higher-derivative theory with complex poles.

• Higher derivatives ⇒ improve the convergence;

• Complex conjugated poles ⇒ trivial imaginary part.
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Minkowski higher-derivative theories

Inconsistencies in Minkowski formulation:

I) Nonlocal, non-Hermitian divergences (also in 4-dim. QG).

Σ(p) = − M4

2(4π)3

[ M2

(p2)2
− i

p2

]
ln
(ΛUV
M2

)
+ . . . , D = 6.

U.G. Aglietti and D. Anselmi, Inconsistency of Minkowski higher-derivative theories,
Eur. Phys. J. C 77 (2017) 84, 16A2 Renormalization.com and arXiv:1612.06510 [hep-th].

II) Unitarity is spoiled at one loop.

−i(T− T†) 6= T†T.

D. Anselmi and M. Piva, Perturbative unitarity of Lee-Wick quantum field theory,
Phys. Rev. D 96 (2017) 045009, 17A2 Renormalization.com and arXiv:1703.05563 [hep-th].

The theory cannot be defined directly on Minkowski spacetime.
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Lee-Wick quantum field theories

T.D. Lee and G.C. Wick, Negative metric and the unitarity of the S-matrix, Nucl. Phys.
B 9 (1969) 209.

R.E. Cutkosky, P.V Landshoff, D.I. Olive, J.C. Polkinghorne, A non-analytic S matrix,
Nucl.Phys. B12 (1969) 281-300.

N. Nakanishi, Lorentz noninvariance of the complex-ghost relativistic field theory, Phys.
Rev. D 3, 811 (1971).

More recently: D.Anselmi, C.D. Carone, B. Grinstein, L. Modesto, D. O’Connell, M.Piva,
L. Rachwal, I. Shapiro, M. Wise.

Difficulties:

I) How to obtain the cancelations?
II) How to cure pinching singularities?
III) How to implement them in a Lagrangian formulation or in a set of

Feynman rules?

Our formulation solves all these problems.
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I) Cancelations

Modify the contour integration in loop integrals (T.D. Lee and G.C. Wick).

iD(p2,m2, ε) =
iM4

(p2 −m2 + iε)((p2)2 +M4)
.

Re[p0]

Im[p0]
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II) Pinching singularities

J (p) =

∫
dDk

(2π)D
D(k2,m2

1, ε1)D((k − p)2,m2
2, ε2) (1)

Re[k0]

Im[k0]
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II) Pinching singularities

CLOP prescription (Cutkosky at al.): two different scales M and M ′ s.t.

M −M ′ = iδ (2)

and send δ → 0 at the end.

Problems:

i) No Lagrangian formulation or Feynman rules.
ii) More complicated diagrams could give other ambiguities.
iii) Inconsistent at one loop in the case m1 6= m2 (D. Anselmi, M.Piva).

Solution: define LW models as
Nonanalytically Wick rotated Euclidean theories.

D. Anselmi and M. Piva, A new formulation of Lee-Wick quantum field theory,
JHEP 1706 (2017) 066, 17A1 Renormalization.com and arXiv:1703.04584 [hep-th].
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New formulation

Analytic structure of J (p) in the p0 complex plane

p = 0

Re[p0]
√
2M

√
2M

Im[p0]

The amplitude is ill-defined on the real
axis above the threshold p2 = 2M2.

p 6= 0

Re[p0]

γ

P

Im[p0]

P ′

Lorentz invariance seems violated
(already noticed by Nakanishi)
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Deform the branch cuts ↔ Deform the k integration domain

Re[p0]

γ

P

Im[p0]

P ′
Re[p0]P

Im[p0]

Constraints on the deformation:

• Symmetric w.r.t. the real axis (unitarity).
• Cross the real axis only in p2 = 2M2 (Lorentz invariance).

The amplitude are well defined but nonanalytic.
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The deformation is practically hard to implement

We argue that

J>LW(p) =
1

2

[
J 0+

LW(p) + J 0−
LW(p)

]

Re[p0]

Im[p0]

J 0+
LW(p)

J 0−
LW(p)

Ã0

OP
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Expansion around the pinching (τ , η fluctuations )

Dϕ = p0eiϕ − ωM (k)− ω∗M (k− p), ωM (k) =
√

k2 + iM2, ps = |p|.

d3k

Dϕ
∝ dτdη

τ − i(p0ϕ+ psη)
.

First ϕ→ 0, then ps → 0 dτdη
[
P
(

1
τ

)
+ iπsgn(η)δ(τ)︸ ︷︷ ︸

0

]
.

First ps → 0, then ϕ→ 0± dτ
[
P
(

1
τ

)
± iπδ(τ)

]
.

A more general prescription
[
P
(

1
τ

)
+ iaδ(τ)

]
dτ

J ∝
[
(M4 +m2

1m
2
2)P

(
1

τ

)
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Discrepancy above the threshold

M = 1, δ = ±10−3, m1 = 3, m2 = 5, δ = −i(M −M ′).

Our formulation gives physical predictions which differ from the previous
ones.
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Lee-Wick quantum gravity

LQG = − 1

2κ2

√
−g
[
R− 1

M4

(
DρRµν

)(
DρRµν

)
+

1

2M4

(
DρR

)(
DρR

)]

Expansion gµν = ηµν + 2κhµν , ηµν = diag(1,−1,−1,−1).

Propagator in harmonic gauge

〈hµν(p)hρσ(−p)〉free =
iM4

2(p2 + iε)

ηµρηνσ + ηµσηνρ − ηµνηρσ
(p2)2 +M4

.

L′QG = − 1

2κ2

[
2ΛC + ζR− 1

M2
RµνPn(2c/M

2)Rµν

+
1

2M2
RQn(2c/M

2)R+ V(R,M,αi)
]

Problem of uniquness
Superrenormalizable models of quantum gravity are infinitely many.
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New quantization prescription
D. Anselmi, On the quantum field theory of gravitational interactions, JHEP 1706 (2017)

086, 17A3 Renormalization.com and arXiv:1704.07728 [hep-th].

L =
1

2
∂µϕ∂

µϕ− λ

4!
ϕ4

Modified Euclidean propagator

p2
E

(p2
E)2 + E4

, E = ficticious LW scale

New prescription

lim
E→0

p2

[(p2)2 + E4]LW
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Quantum gravity with dimensionless gauge couplings

LQG = − 1

2κ2

√
−g
[
2ΛC + ζR− γ

M2
RµνR

µν +
1

2M2
(γ − η)R2

]
, ζ > 0, γ < 0.

The Lagrangian coincides with Stelle theory but we quantize it in a different
way.

〈
hµν(p)hρσ(−p)

〉free

ΛC=η=0
=

iM2

2p2
(
ζM2 + γp2

) (ηµρηνσ + ηµσηνρ − ηµνηρσ).

With the new prescription it turns into{ 1

p2 + iε
− γ(ζM2 + γp2)[

(ζM2 + γp2)2 + E4
]
LW

} i

2ζ
(ηµρηνσ + ηµσηνρ − ηµνηρσ).

A unique, renormalizable and unitary theory of QG in 4 dim.

Unitarity can be proved only if ΛC = 0 but realistic models have ΛC 6= 0.
The cosmological constant might be an anomaly of unitarity.

17 / 18



Quantum gravity with dimensionless gauge couplings

LQG = − 1

2κ2

√
−g
[
2ΛC + ζR− γ

M2
RµνR

µν +
1

2M2
(γ − η)R2

]
, ζ > 0, γ < 0.

The Lagrangian coincides with Stelle theory but we quantize it in a different
way.〈

hµν(p)hρσ(−p)
〉free

ΛC=η=0
=

iM2

2p2
(
ζM2 + γp2

) (ηµρηνσ + ηµσηνρ − ηµνηρσ).

With the new prescription it turns into{ 1

p2 + iε
− γ(ζM2 + γp2)[

(ζM2 + γp2)2 + E4
]
LW

} i

2ζ
(ηµρηνσ + ηµσηνρ − ηµνηρσ).

A unique, renormalizable and unitary theory of QG in 4 dim.

Unitarity can be proved only if ΛC = 0 but realistic models have ΛC 6= 0.
The cosmological constant might be an anomaly of unitarity.

17 / 18



Quantum gravity with dimensionless gauge couplings

LQG = − 1

2κ2

√
−g
[
2ΛC + ζR− γ

M2
RµνR

µν +
1

2M2
(γ − η)R2

]
, ζ > 0, γ < 0.

The Lagrangian coincides with Stelle theory but we quantize it in a different
way.〈

hµν(p)hρσ(−p)
〉free

ΛC=η=0
=

iM2

2p2
(
ζM2 + γp2

) (ηµρηνσ + ηµσηνρ − ηµνηρσ).

With the new prescription it turns into{ 1

p2 + iε
− γ(ζM2 + γp2)[

(ζM2 + γp2)2 + E4
]
LW

} i

2ζ
(ηµρηνσ + ηµσηνρ − ηµνηρσ).

A unique, renormalizable and unitary theory of QG in 4 dim.

Unitarity can be proved only if ΛC = 0 but realistic models have ΛC 6= 0.
The cosmological constant might be an anomaly of unitarity.

17 / 18



Quantum gravity with dimensionless gauge couplings

LQG = − 1

2κ2

√
−g
[
2ΛC + ζR− γ

M2
RµνR

µν +
1

2M2
(γ − η)R2

]
, ζ > 0, γ < 0.

The Lagrangian coincides with Stelle theory but we quantize it in a different
way.〈

hµν(p)hρσ(−p)
〉free

ΛC=η=0
=

iM2

2p2
(
ζM2 + γp2

) (ηµρηνσ + ηµσηνρ − ηµνηρσ).

With the new prescription it turns into{ 1

p2 + iε
− γ(ζM2 + γp2)[

(ζM2 + γp2)2 + E4
]
LW

} i

2ζ
(ηµρηνσ + ηµσηνρ − ηµνηρσ).

A unique, renormalizable and unitary theory of QG in 4 dim.

Unitarity can be proved only if ΛC = 0 but realistic models have ΛC 6= 0.
The cosmological constant might be an anomaly of unitarity.

17 / 18



Quantum gravity with dimensionless gauge couplings

LQG = − 1

2κ2

√
−g
[
2ΛC + ζR− γ

M2
RµνR

µν +
1

2M2
(γ − η)R2

]
, ζ > 0, γ < 0.

The Lagrangian coincides with Stelle theory but we quantize it in a different
way.〈

hµν(p)hρσ(−p)
〉free

ΛC=η=0
=

iM2

2p2
(
ζM2 + γp2

) (ηµρηνσ + ηµσηνρ − ηµνηρσ).

With the new prescription it turns into{ 1

p2 + iε
− γ(ζM2 + γp2)[

(ζM2 + γp2)2 + E4
]
LW

} i

2ζ
(ηµρηνσ + ηµσηνρ − ηµνηρσ).

A unique, renormalizable and unitary theory of QG in 4 dim.

Unitarity can be proved only if ΛC = 0 but realistic models have ΛC 6= 0.
The cosmological constant might be an anomaly of unitarity.

17 / 18



Conclusions and future developments

• Solution of the quantum gravity problem: reconcile renormalizability
and unitarity.

• The new formulation gives well defined amplitudes and unitarity
equations, physically different from the previous formulations.

• Prediction of nonanalitycity of the amplitudes.

• Proof of unitarity beyond one loop.

• Study the physics of the new model of QG which involves our
formulation (in preparation)

• Investigate the new possible phenomenology of fundamental
interactions due to the new quantization prescription.
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