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Summary

* The problem of searching small signals at unknown mass in high
energy physics.

* Review of standard approach.
* Investigation of a new analysis method (wavelet analysis).
* Definition
* Inspection of properties
* Data
* Comparison with other methods
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Context

The search of new physics phenomena is one of the most
relevant topic in recent years high energy physics.

 Direct search at accelerators (LHC) requires an enormous effort
from the worldwide physic community.

* Up to now, no evidence of new physics have been found at LHC.
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The problem of searching a new particle in LHC-like conditions:
* The signal is very small.
* The new particle’s mass is unknown.
* The background is in general (very) huge.

¥1/90/TT




Particle measurement: a reminder

ATLAS ¢ Daa 3

Sig+Bkg Fit (m_=126.5 GeV) E

* A decaying particle is detectable as a
resonance in the invariant mass spectrum 2000 ™

FE e e Bkg (4th order polynomial) ;

Events / 2 GeV

of it’s decay products. Pt St o
* Both it’s mass and cross section are g o il 5
determined from the mass spectrum. : °§
* In the scenario we’re considering, such a signal should be 5
distinguished among a background orders of magnitude huger than
the signal itself.
N
+ Background shape can be simulated with S . Bl oacsarouna 27 Hirz"zﬂim
MonteCarlo (MC) or fitted to the data 2 | EllBackground Z+jets, A
themselves. Geor LI 11 &
* Any excess with respect to background is then 5105 = 7 TeV: fLot = 4.8 1" } ] %
considered. E\@:BTeV:det:S.be‘1 }
* Standard statistical tools are applied to ’ )
determine if a given excess is due to statistical
fluctuation or is the evidence of a new particle. 4
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Hypothesis test

Check if the data are incompatible with a given hypothesis (null
hypothesis H,).

* This is done computing the probability (p-value) of finding an excess
equal or greater than the one in data.

* A small p-value indicates that the null hypothesis can be rejected (i.e.
the excess is a signal)
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More complex extensions of the hypothesis test have been
developed for the case in which there is no information on the

mass of eventual signals (multiple hypothesis test, Bump Hunter).
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In most cases, this kind on analysis relies on background modeling.




Alternative method: wavelet analysis

*  Wavelet analysis was developed to detect localized structures in time
series, it is based on wavelet transform.

*  Wavelet transform is an evolution of Fourier transform, substituting the
plane wave function with a local complex function W(¢).

S
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H(w) = / p(e~tdt = Wit s) = / ()" (t_t/>dt’

* |t can be applied to the analysis of any random variable m of density f(m).
* Here, f(m) is the invariant mass spectrum.
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* Itis applied in a variety of fields:
* Denoising tool (e.g. in gravitational waves experiments)
* Data compression (JPEG standard)

* Analysis of quasi periodic phenomena (geophysics, metereology)
* Detection of weak light sources in photon counting detection images




Wavelet analysis: an introducton

The wavelet analysis is a multiscale method: it allows to separate
structures of different dimension in mass.

/

Wavelet transform (continuous):  W(m, s) = /f(m’)w* (m — 7 > dm/

S

* Here, Y is the Mexican Hat
(DoG) function.

* It can be any local function
with zero mean.

Varying m and the scale s, W(m,s) gives a global \/ o
picture of f(m) features. . — 59279 | P01

In practice, f(m) is substituted by the mass
histogram.

S (' —n)o
Wm=mn-om,s) = Zaznzw*(n " m)
n’=0
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W(m,s)
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Signal expectation

The wavelet transform of a gaussian signal is expected to be a bell-

shaped function of m, peaking at the

* The peak height can be an estimator
N

ev*

W(m,s) = A(s,0)

(4]
TTT

signal mass.
of the number of signal events

_ (ndm—p)?
-5m- 1_(n5m by’ <62+5>
o2 + g2

Example without background: W(m,j.=29)

wavelet transform: W(m,Js)
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* A non flat background strongly affects the wavelet transform,
making difficult to identify the signal. o evelTensomWm |
| . . -
*With an appropriate choice of acceptable a5 @ .
scales region and contour levels, a not too a0 - 4| =
small signal can still be visible. o |3
* The method performances are strongly 15f. |
reduced. 1oF | £
wavelet transform: W(m,Js) 5:"”_H‘H‘_H_H_H_H_H_H_H
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Non flat background (2)

* A more efficient solution is to fit the background shape and

subtract the fit result from real data.

* Since the wavelet analysis is sensitive to any small structure, fit

quality is a very delicate point.

* Simulated samples represent the ideal case in which the background is a
pure exponential, this is not the case in real data.

wavelet transform: W(m,Js)
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Testing the method: W(m,s) vs Number
of sighal events

* Background samples with a gaussian signal (u=100 GeV 0=15 GeV)
have been generated using toy MonteCarlos.

* The height of W(m,s) peaks has been measured varying the number
of signal events (S).

* Only peaks found inside the acceptance region [p-o;u+0] are
considered.
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. = - 0 . + 0.
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Testing the method: W(m,s) vs Number
of sighal events

* Adding 10° (exponential) background events W maxima height is still a
linear function of S with good approximation.

* The background has been fitted and subtracted before the wavelet

transform. =
* The constant term has increased because of background. ‘%
* The slope has variation smaller than percent. =
c |/ ndf 44.3/5 >
= - | p!  0.05136+ 0.000368
2140
(O] L
e -
~ 120
© -
(O] L
o 100— i
. = - S
Result without background: 80— >
: 5 IS
p0O  0.08654 + 0.0166 60l 10
; - background
p1 0.05707 = 7.129e-05 4o:— e
20,
B 13
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Statistical treatment

* An hypothesis test is performed locally, evaluating W(m,s)
distribution, fixed m,s.
* Xx,are Poisson variables: we assume gaussian approximation to be

valid. _
» The data arithmetic mean is subtracted before making the wavelet é
transform, then x, should have zero mean. =)
N gy (O W N (0
W(m,s) = ), aw -y s = (m,s) ~ ( 70m,s) =
n'=0 N—1
U(2m,s) = VCLT’(W(?TL?S)) = Z L - ‘Cn’(mv 3)|2
=0
* The p-value is computed given the value 04F
0.35F -
of W(m,s)/o,,, . s g
025 2
oo 5 o
p-value = N(0,1)dx 0.15]
mo 0.12—
0.05F 14
ro =W(m,s)/om.s i




Statistical treatment: empirical check

* We have checked the assumption W(m,s)/o,, . ~ N(0,1) computing
empirically the cumulative distribution function (CDF) for W(m,s)/
0, s using toy MonteCarlos with no signal added.

wavelet peak: complement of cumulative distribution function

Wjo) %

— W/o: distribution function.
- W/o: CDF
— CDF of N(0,1)

CDF(W/o)) = 3.

(W/a)'>(W/a)

0.8
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*  The distribution mean is nonzero: o¢f
probably because we are X
considering W maxima, not single B
bins. 0ol

0.4|-

W/sigma

0.2

0.8

0.6

0.4

Theoretical CDF computed
using the W/o empirical °
mean

Empirically, the W/o mean is
independent on the number of
background events.

lflat = 1.3740.01
fezp = 1.3140.01
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Efficiency

» Efficiency is computed injecting a gaussian signal (N(u,o)) of
known mass on a simulated background.
 Efficiency is the fraction of cases in which a W(m,s) peak is found

in the mass window [p-o,u+0]. s
decreasing background: 100000 events %‘
> 1.2 B ° Efficiency — i
° Fake rate iS % - Fake Rate (i.e. efficiency computed with S=0) %
o -
computed by = 1 o . y °
applying the same - + ¢
algorithm with zero  9-8[
signal events. 0.6 Fake rate
or / §
* No requests are 0.4— % I A I s -
made about the - | o
significance of the B Exponential background, subtracted
found peaks. O_I 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 16

0 0.01 002 003 004 005 0.06 o0.07
Signal over background ratio




Estimation of the signal width

*  From the theory, a wider signal is expected to peak at larger
scales (i.e. at larger scale index j)

* This property has been investigated using toy MonteCarlos.

* The scale index j, of
the peak has been
measured varying
the signal standard
deviation.
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* The scale index of
the peak tends to
saturate for large
signals.

26
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10° background events
1000 signal events
Mean = 100 GeV

Scale index of the peak: mean

25
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Application to real data: available samples
and event selection

* Invariant mass of jet pairs produced in association with a
leptonically decaying W.

* Data acquired by the ATLAS experiment in 2011: Vs=7 TeV and

[=4.702 fb ;_
 The Standard Model main contribute is the diboson production 5
(WW/W2). 1 | 2
Cross section from the ATLAS collaboration: : L
oww/wz = 72+ 9 (stat.) & 15 (syst.) £ 13 (MC stat) pb
q W/Z !

* Dijets events are selected by requiring a W — |v decay.

Events must contain one single charged lepton passing the object
selection and large missing transverse energy (i.e. a neutrino)
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Cut on lepton-neutrino transverse mass to select W events.

* A further selection is applied to jets to reduce background. s




events/(25 GeV)

Application to real data: M;; samples

10*

10°

102

10

The analysis have been performed independently for two
channels: electron channel and muon channel.
Depending if the selected lepron is an electron or a muon.

For most of our analysis, the combined sample will be used.

Electron channel.
Inclusive selection.

|I | I I I | X1 03
500 1000 1500 2000 2500
jet-jet invariant mass (MeV)

TVTIIW/\cO UT V)

—
o
o

Muon channel.
Inclusive selection.

—_
Qo
>

—_
o
W

102

10

1

0 500 1000 1500 2000 2500
jet-jet invariant mass (MeV)

With a rough evaluation of the selection acceptance the number of
expected diboson events is estimated to be of order 103 for both

channels.
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The fit problem

* Inreal data, the background shape is not a simple exponential as
in toy models.

A combination of gaussian and exponential has been used as fit
function.

* Test of the pure exponential approximation:

* The mass range [130,330] GeV has been used as control region.
* Asimulated signal has been inserted at u=200 GeV
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* The signal has been detected at the right mass, but its width and
number of events are underestimated.

Inserted signal Detected signal
js = 25 o~ 6GeV | &
o = 15GeV 5 g

= ..
= signal events ~ 460
signal events = 900 Wpear = 30.8 g

p-value = 0.21

* The method should be calibrated using real data or a more
precise MC simulation.

20
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Signal expected peak is very
close to background peak:

due to fit difficulties, this
check of wavelet method is

not much significative.

wavelet transform: W(m,Js)
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Data analysis: results

* A peakis found at the expected mass.

* The detected number of events is about 1/5 of the expected one (a
fewer fraction than obtained with the simulated signal).

* The underestimation of the signal width is fewer than what observed in
the calibration.
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Expected Measured
Signal events ~5-10° ~ 1.5-10°
Signal ~ 15 GeV ~ 10 GeV

standard deviation

* A peakis found in both electron and muon channel treated
separately:

* The masses are clearly compatible
* The peaks have the same width.
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* The sum of the number of events detected in the two channels is 22
compatible with the number of events measured in the combined case.
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Mass distribution fit to a Gauss+Exponential function
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Comparison with other methods

Simple hypothesis test based on the likelihood ratio.

Consider a variable x of PDF f(x; ¥,....0,). Given a measurement x,, of x,
the likelihood (1) is a function of the parameters U,

1000 i[rrui]fwmﬂ %%

The mass spectrum is divided in a test region, :
800

where the signal is expected, and a control

600

region. i
The number of events in the control region ~ **F
is used to estimate the background. 200F
Control 1 Test Control 2
[ N 29790 N, 40453 . 30257
%20 40 60 80 100 120 140 160 180 200
The test statistic is the likelihood ratio A . M (GeV)
A L(Np,N¢|S =0) ,
L(Ny,N¢|S #0) —2log A ~ x*(1)

For this test, the expected mass of the signal must be known. More
general cases are being considered at present.
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Direct comparison with wavelet analysis

102

Generate pseudo-experiments given B and S, for each one
compute the p-value and plot it.

If the null hypothesis is true, the p-value is uniformly distributed
between 0 and 1.

To reproduce the same conditions in the two test, the wavelet peaks
are required to have a mass difference smaller than a standard
deviation from the inserted signal.

Mean p-Value 0.499995

l

— No signal. 10° background events

1 Likelihood
ratio

Mean p-Value 0.500399

Wav

elet

Tw

HH‘l l‘HH‘lHHH‘HH‘HH‘HH‘lH

‘HH

0 0.1020.30.4050.60.70.80.9
p-Value

0 0.10.20.30405060.70.80.9 1
p-Value

Wavelet p-value is only
approximately flat: the
gaussian
approximation for W/o
is not perfect.

The distribution does
not reach 1 because
we are considering
local maxima, not
single bins.
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Direct comparison with wavelet: signal

—— 500 signal events. 10° background events —

Mean p-Value 0.155011 y Mean p-Value 0.12592
10 Mean p-values are
Likelihood ratio Wavelet comparable in the two
cases. =
Q
2
i: — 10* 500 signal events. =)
L Q
: 10° background events v
L Q
' 10" =
i M Mean p-Value 0.330444
HH‘HH‘HH‘HH‘\\ H\‘\ \‘\ 1 10-3
0 0.10.20.304050.60.70.80.9 1 0 0.1020.304050.60.7080.9 1
p-Value p-Value
107 .
Eliminating the requirement on the wavelet S
N (9]
peak’s mass, the p-value still peaks at zero. N
Wavelet:
unknown mass case
Extending other tests to the case of unknown 10°
mass requires much more complications. 27

0 0.1020.30405060.70.809 1
p-Value




Conclusions

Wavelet analysis provided very promising results with toy
MonteCarlo simulations:

* Itis highly sensitive in the detection of small signals over large
background

* It'sresponse is linear in the number of signal events
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When considering more realistic background distributions, the
method appears less performant:

* Further calibration studies should be done in more realistic
conditions.

Further test on known resonances should be done, avoiding
patological background conditions.
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Comparative studies with standard research methods should be

developed. 28
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Name w,(m) lffﬁ{sm} w, () (graphic)

Morlet V8 e - 2 Y H(w)e ~(sw-mq)* 2
(@, = frequency)

0.3} (m=4)
2"i"m! [m=1) A Mmoo —s “51
Paul (1-in) ——— H(w)(sw)"e N
{r:u= ﬂrdﬂrj A J‘t[ﬂm}" 4 m(zm - 1}! 0.0 - ‘\'i‘rlll V
-0.3 v

{m = derivative)

0.3+ (m=2)
{_l}m i d" -0tz ( )m ~{sa) 2 [
DOG 1IIIIlr[m + %] an” {E ) \ l‘(m +— ) 0.0 ‘w_\ J \ ; |

H(w) = Heaviside step function, H{w) = 1 if w > 0, H{w) =0 otherwise.
DOG = derivative of a Gaussian: st = 2 is the Marr or Mexican hat wavelet.

Three wavelet mother functions and their Fourier transform. Con-
stant factors for ¢y and vy are for normalisation. The plots on the right give the
real part (solid) and imaginery part (dashed) for the wavelets as functions of the
parameter 1 .

Reference:

letin of the American Meteorological society, vol. 79, no. 1, pp. 61-78, 1998.

C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bul-
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Details on wavelet transform calculation

N-1
@ Itis considerably faster to compute the wavelet W(m,s) = XU (ka)e’wk”‘sm
transform in Fourier space. k=0
* The discrete Fourier transform of x, is: 3, = ]bNZ o~ i2mkn/N
« 4)(swy)is the Fourier transform of a (continuous)'™ B { ]\2[%7]; if k< %
function Y(m/s). Wi = 2k i s N
Ném 2

® W(m,s), as a continuous function of s, can be approximated by computing the wavelet

transform for a set of scales. = .
* syisthe smallest resolvable scale: s,= 6m Sj = 802‘7 2 , ] = O, 1, ooy J
*  §j sets the smallest wavelet resolution: 6j = 0.25
* Jsets the value of the largest scale: J =44

€ Normalization: W(m,s) at different scales must be directly
compared, therefore it is necessary that they all have the same J+OO

normalization.
*  The normalization is fixed for the Fourier transform of the mother
wavelet function: it is normalized to have unit energy. 9 s /2
( ) o(swy)

[tho(sw)dw = 1

—00

Y(swy) = .

*  The wavelet daughter are normalized in the same way adding a
normalization constant to their Fourier transform.

@ Fourier transform is computed padding with zeroes the end of the mass range: this influence
W(m,s) in the region close to the edges.

» The Cone of Influence (COI) is the region in m x s plane where edge effects are important.
Discontinuities at the edges decrease exponentially: at each scale, COl is defined by the ‘characteristic
length’ of this decrease.
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W/o mean: flat background

T 2 | ndf 0.384 /7
~ 1.5 PO 1.373 + 0.01461
=
) B
1.45_—.
[ | ¢ ¢
1.4 ¢
1.35 !
B o
L
1.3(f
:I | | | | | | | | | | | | | | | | | | | | | | | | | | | | I | | X103
0 50 100 150 200 250 300

Background events
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W/o mean: exponential background

2
o1.45 2 / ndf 8.221 /7
~— — .
=~ o) 1.315 + 0.01471
| <
* 1.4~ ¢ %
1.35} ! i
B 0
Fy 3
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E"a | g
1.25_— S
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Efficiency without background subtraction
» Efficiency is the fraction of cases in which a W(m,s) peak is
found in the mass window [u-o,u+0].
decreasing background: 100000 events =
3. 1.2_ ° Efficiency — 095
CIC) — Fake Rate (i.e. efficiency computed with S=0) g
:g 1__ () e %
L B é 5
0.8 + Exponential background,
B NOT subtracted
0.6 %
0.4 g
B Fake rate =
0.2 $ ‘/
-6 o o S, A
0_ | | /I | | | | |/ | | | | | i | | | | | /I | | | ’ | |//I | | | 34
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Signal over background ratio
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| Efficiency of fit (constant+gaussian): flat background. |
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Efficiency in identifying a gaussian
signal over a flat background, by
fitting the data with a gaussian
function superimposed to a
constant term.

Flat background: 6000 events.
Signal: 100 events, u=100 GeV,
0=15 GeV.

The signal width have been fixed
to 15 GeV in the fit.

Half width of the acceptance interval:

15 GeV = signal width
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The “Bump Hunter”

* Standard ATLAS tool to extent the hypothesis test to the case of
unknown mass.

1. The invariant mass spectrum is divided in regions of varying center
and width.

2. For each region, a p-value is computed, given the expected
background events in each region (obtained with data fitting or MC

studies).

e|jeds eiusysdie|p

3. The smallest p-value is chosen: this is the test statistics X.

4. A global p-value is computed using the PDF of X.

¥1/90/TT

*  The tool will return the most significant interval and the
corresponding global p-value.

1 Ref:

» ATLAS internal web resources. 37
» http://arxiv.org/abs/1101.0390




SELECTION APPLIED TO DATA: OBJECT SELECTION
Objects passing the selection are defined as good objects.

MUON SELECTION.

Combined muons are used.

Trigger: EF_mul8_ MG,
EF_mul8_MG_medium. p;>25 GeV is
required to restrict to the trigger
efficiency plateau.

Track quality cuts.

In| <2.4

Impact parameter: |d,/Vo(d,)| <3 and
Z,<1 mm.

Isolation.

Track: 2(p;%)/p; < 0.15 in a cone of
radius R=0.3

Calorimeter: 2(E;*")/p; < 0.14 in a cone

of radius R=0.3

ELECTRON SELECTION.

Candidates satisfying the tight++
identification criteria.
Trigger: EF_e20_medium,
EF_e22 medium, EF_e22vh_mediuml.
p>25 GeV is required to restrict to the
trigger efficiency plateau.
|n| <2.47, excluding 1.37 < |n]| < 1.52.
Impact parameter: |d,/Vo(d,)| < 10 and
Z,<1 mm.
Isolation.
Track: 2(p;t@)/p; < 0.14 in a cone of
R=0.3
Calorimeter: 2(E;®")/p; < 0.13 in a
cone of R=0.3

JET SELECTION.
Jets reconstructed with Anti-kt algorithm, passing looser quality criteria.

pr > 25 GeV
In| <2.8

Jet Vertex Fraction > 0.75 to reject jets from pile-up interactions.

AR(j,/) > 0.5, l'is the selected lepton. This to remove overlap between jets and energy deposits

due to leptons.
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38



Event selection

Dijets events are triggered by requiring a W — v decay.

Events are firstly pre-selected applying cuts on event quality:
Stable beam conditions, absence of large noise bursts or data integrity errors in
the LAr, no jets of p;>20 GeV pointing to the Lar non-sensitive area (Lar hole).
A reconstructed primary vertex with at least three associated tracks of p;>0.5
GeV

muon-neutrino transverse mass

4500 Entries 43532

Events with one charged lepton passing

the object selection. 3500
Events are discarded if a second 3000
lepton passes the object selection. 2500
Trigger-matching: a check to verify
that the selected lepton is the one 1000
that fired the trigger in the event. 500

0...I...I...I...I.. L

P R P
20 40 60 80 100 120 140 160 180
Mt (MeV)

Muon channel:
subsample of the
analized dataset

2000

_x10°

o

Events containing also a neutrino: EM >25 GeV
Cleaning cuts are applied to the jets before E;™s cut to avoid non-physical E;™Miss
due to jet reconstruction errors.

Cut on the lepton-neutrino transverse mass: M; > 40 GeV
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Event selection

Once W — v events are selected, further cuts are applied to jets.

= with respect to the selection used in Standard Model diboson measurement,
fewer cuts are applied to apply wavelet analysis at a more inclusive level.

» At least two jets passing the object selection
> Ab(E,™S, j,) > 0.8. Where j, is the jet of highest p;

» The dijet invariant mass is built using the two selected jets of highest p

jet-jet invariant mass distribution

jet-jet invariant mass distribution

10° Entries 522804 10

10"

Muon channel.
10" . .
Inclusive selection.

10

10°

10

1000 1500 2000 2500 3000

Mjj (MeV)

Entries 247086

Electron channel.
Inclusive selection.

L I L l L I L I Ly fx1 03
2000 2500 3000
Mij (MeV)
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