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Solution of the Holstein equation of radiation trapping by the geometrical quantization technique.
III. Partial frequency redistribution with Doppler broadening
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We introduce an analytical method to investigate radiation trapping problems with Doppler frequency
redistribution. The problem is formulated within the framework of the Holstein-Biberman-Payne equation. We
interpret the basic integro-differential trapping equation as a generalized wave equation for a four-dimensional
~4D! classical system~an associated quasiparticle!. We then construct its analytical solution by a semiclassical
approach, called the geometrical quantization technique~GQT!. Within the GQT, it is shown that the spatial
and frequency variables can be separated and that the frequency part of the excited atom distribution function
obeys a stationary Schro¨dinger equation for a perturbed oscillator. We demonstrate that there is a noticeable
deviation of the actual spectral emission profile from the Doppler line in the region of small opacities. The
problem of calculating the spatial mode structure and the effective radiation trapping factors is reduced to the
evaluation of wave functions and quantized energy values of the quasiparticle confined in the vapor cell. We
formulate the quantization rules and derive the phase factors, which allow us to obtain analytically the com-
plete spectrum of the trapping factors in 1D geometries~layer, cylinder, sphere! and other~2D and 3D!
geometries when the separation of space variables is possible. Finally, we outline a possible extension of our
method to treat radiation trapping effects for more general experimental situations including, for instance, a
system of cold atoms.

DOI: 10.1103/PhysRevA.63.042703 PACS number~s!: 32.80.2t, 32.50.1d, 03.65.Sq
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I. INTRODUCTION
In an optically thick vapor, a resonant photon can

‘‘trapped,’’ so that it escapes from the vapor cell only aft
several subsequent absorption-emission processes by th
por atoms@1,2#. This radiation trapping process is an impo
tant part of various physical phenomena, such as plasma@3#
and optical engineering problems@2#. Under laboratory con-
ditions@4,5#, the radiation trapping can strongly influence t
spectral and temporal features of the radiation emerging f
the cell and should be carefully considered in the quantita
analysis of experimental data@2,3,6# involving resonance ra
diation. However, solving the integro-differential equatio
describing the radiation trapping is a difficult mathemati
problem, even in the most simple case of a two-level at
model with the assumption of complete frequency redistri
tion ~CFR! for reemitted photons@3,7#. The main difficulty is
due to divergence of the mean free path of the photons@3#,
which prevents any approximation of the integral trapp
equations by a local diffusion equation of the Fokker-Pla
type. Despite the intensive investigations during the pas
years, no universally applicable analytical solution could
found. Even the study of the elementary one-dimensio
geometries~infinite layer, infinite cylinder, sphere! of the
vapor cell has resulted in a substantial number of very s
cific approximate techniques for different astrophysical a
physical problems@2,8,9#.

*On sabbatical leave from Dipartimento di Fisica della Materi
Tecnologie Fisiche Avanzate, Universita` di Messina, Salita Speron
31, I-98166 Sant’Agata, Italy.
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Recently, we have introduced@10,11# a universal, very
accurate~albeit approximate! analytical method for solving
the Holstein radiation trapping equation~also known as the
Biberman-Holstein equation!, the so-called geometrica
quantization technique~GQT!. The GQT was developed fo
the investigation of integral rate equations for the excite
state density in vapor cells of various shapes under the
sumption of CFR. The GQT exploits the mathematic
equivalence of the Holstein equation with the Schro¨dinger
equation of a classical Hamiltonian system~also known as a
quasiparticle!, subjected to the canonical quantization@12#.
Within the GQT, one obtains the mode structure and
radiation escape factors as the wave functions and the ei
values of the Schro¨dinger-like equation. In the present pape
we extend the GQT to situations with partial frequency
distribution ~PFR! of reemitted photons. We restrict ou
selves to the case in which the redistribution function is d
to the Doppler effect only, for which the abbreviation DFR
used hereafter. This allows us to give a closed and relativ
compact presentation of the GQT.

With the developed analytical technique, we confir
some conclusions derived previously from numerical stud
@13–15# or obtained with mixed analytical-numerical met
ods @16#. We show that the deviations between the trapp
factors evaluated within the CFR assumption and the d
obtained for the case of DFR arealwayswithin 12% mar-
gins. At the same time, we demonstrate that the actual s
tral emission profiles in the lowest eigenmodes~with respect
to the frequency variable! can deviate considerably from th
Doppler profile. We discuss also the higher-mode relaxat
effects, addressing the temporal behavior of the escaping

e
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diation in after-glow experiments. An anomalous structure
the time dependence of the radiation intensity during the
stage of the emission of trapped light is shown to be due
some competing processes.

The paper is organized as follows. In Sec. II, the mas
equation determining the dynamics of radiation trapping p
cesses with the Doppler frequency redistribution function
discussed. In Sec. III, the reduction of the master equatio
the form of a 4D~one frequency and three spatial variable!
generalized wave equation is described. In Sec. IV, the m
ter equation is analyzed and the explicit representations
for the trapping factors and for the frequency distributi
functions in the modes are obtained for the case of an
nitely extended medium. In Sec. V, we introduce the GQ
for the study of finite gas cells of various geometries. T
technique has been shown to be rather accurate@10,11# for
the case of CFR; its accuracy for DFR is discussed in de
here. The GQT relates the radiation trapping problem to
consideration of the motion of a classical quasiparticle c
fined in the cell. It is shown that the GQT allows one
separate effectively the frequency and spatial variables.
generalized quantization rules are formulated and the
evant phase factors are calculated. Finally, we apply
GQT for the construction of semiclassical analytical rep
sentations of the effective radiation constants and the
quency distribution functions in the eigenmodes. Section
contains a description of the ready-to-use recipes for ev
ating both the trapping factors and the emission profiles.
compare the results obtained within the present method
numerical data of previous investigations and demonst
that our results are accurate within 2–4 % for the fundam
tal mode and even better (,0.5%) for higher-order modes
To emphasize some specific features of the radiation tran
with PFR, we perform a special study of the temporal dep
dence of the emergent radiation intensity in an after-gl
experiment. Some possibilities for further development
the described approach are outlined. Section VII summar
the main aspects of the GQT and its relation to the gen
PFR problems. A semiclassical discussion, aimed at confi
ing the idea of the frequency and spatial variables separa
is relegated to Appendix A. In order to minimize mathema
cal details, references will be made to the original literat
whenever possible.

We would suggest that those readers interested only in
ready-to-use analytical recipes for an efficient calculation
the trapping factors restrict themselves to Sec. II and Sec

II. FORMULATION OF THE PROBLEM

The fundamental problem we address in this paper ca
illustrated by the basic equations@4,2# mastering the time
evolution of the frequency-dependent density function of
excited atomsn* (rW,n,t) over the space coordinaterW and the
frequencyn ~which is directly related to the velocity distri
bution of the atoms in the case of Doppler broadening!:
04270
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] n* ~rW,n,t !

] t
52A21n* ~rW,n,t !2A21W~rW !n* ~rW,n,t !

1A21E
2`

`

dn8E
V

d3r 8Gnn8~ urW2rW8u!

3n* ~rW8,n8,t !1S~rW,n,t !. ~1!

The productA21n* (rW,n,t)DVdn gives an amount of photon
spontaneously emitted per one second within the freque
interval @n;n1dn# by the excited atoms contained in th
volume DV; A21

21 is the lifetime of the excited state with
respect to its spontaneous decay;1 W(rW) is the dimensionless
intensity of the excited atoms quenching by unspecified p
cesses of nonradiative decay. Here we assume that the f
tion W(rW) provides the vanishing of the density functio
n* (rW,n,t) outside a given space cellV.2 The propagator
Gnn8(urW2rW8u) describes the photon transfer from an emitti
atom to an absorbing one. The termS(rW,n,t) provides a
~nonstationary! source of the excited atoms. In Eq.~1!, we do
not consider explicitly the polarization and alignment ph
nomena discussed by D’yakonov and Perel’@17#. These phe-
nomena can be studied within the present approach by tr
ing n* (rW,n,t) not as a scalar quantity, but as th
corresponding spherical tensor~see also@13#!.

The problem we discuss is determined by the followi
formula for the propagatorGnn8(r):

Gnn85k̄Rnn8G̃n8~r! with

G̃n8~r!5
1

4pr2
exp@2rk~n8!#, k̄[E

2`

`

dn k~n!,

~2!

where Rnn8 is the angle-averaged frequency redistributi
function andk(n) is the spectral absorption coefficient. Th
universal identity@4#

k̄ E
2`

`

dn Rnn85k~n8! ~3!

implies that the effective photon absorption occurs only
the photon reemission with changed frequency.

For the case of pure Doppler broadening, the conventio
representations for the functions involved are as follows@4#:

k~n!5k (D)~n![k0
(D) exp~2n2!, k̄5Apk0

(D) , ~4!

Rnn85
1
2 erf~max$unu,un8u%!. ~5!

The Doppler absorption coefficientk0
(D) in the center of the

spectral line and the dimensionless reduced frequencyn,

1In what follows, we setA2151, fixing the natural for the problem
time scale.

2This allows one to integrate over the infinite three-dimensio
space in Eq.~1! by settingW very large outside the vapor cell@10#.
See also Sec. V and Appendix A.
3-2
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SOLUTION OF THE HOLSTEIN . . . . III. . . . PHYSICAL REVIEW A63 042703
measured from the line center in the Doppler width un
Dn (D), are used in Eqs.~4! and ~5!. It should be noted tha
nontrivial evolution occurs only for the even, over-th
frequency variable, component of the functionn* (rW,n,t).

III. REDUCTION OF THE TRAPPING EQUATION

First, let us convert the trapping integral equation~1! with
the Doppler redistribution function~5! in the form of a gen-
eralized differential~wave! equation. Considering the fre
quency redistribution kernelRnn8 , we can easily verify the
following identity @4#:

]

]n
exp~n2!

]

]n
Rnn852

1

Ap
@d~n2n8!1d~n1n8!#. ~6!

Equation~6! can be represented in the form

F2
1

2

]2

]n2
1

11n2

2 GexpS n2

2 DRnn8

5
1

2Ap
expS 2

n2

2 D @d~n2n8!1d~n1n8!#. ~7!

Hence, the kernelRnn8 in Eq. ~5! is directly related to the
Green function of the second-order differential operator
quantum oscillator type.

In Eq. ~1!, the integral operator over space variables c
be converted into the form of a generalized differential o
erator. Formally, the general integral convolution operatoĜ

Ĝf ~rW !5E
R3

d3r 8G~ urW2rW8u! f ~rW8! ~8!

is interpreted as the corresponding operator function over

momentum operatorpŴ 52 i¹W @10,11#, and so it can be re
written as follows@10#:

E
R3

d3r 8G~ urW2rW8u! f ~rW8!5G(F)~2 i¹W ! f ~rW !,

G(F)~pW ![E
R3

d3r 8G~rW8!exp~ ipW rW8!. ~9!

In the case of Eq.~1!, the representation for the Fourie
transformG(F)(pW ) of the kernal functionG̃n8 , Eq. ~2!, is
well known @8#:

G̃n8
(F)

~pW !5
1

p
arctanF p

k (D)~n8!
G , p5upW u. ~10!

The spatial isotropy of the task under consideration ma
fests itself in the independence of the functionG̃n8

(F) of the
momentum direction. With the identities Eqs.~7!, ~9!, and
~10!, the trapping master equation~1! turns out to exhibit the
structure of a diffusion-type equation:
04270
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L̂nF ]

] t
111W~rW !G ñ* ~rW,n,t !5F~2 i¹W ,n!ñ* ~rW,n,t !

1L̂nS~rW,n,t !, ~11!

L̂n52
1

2

]2

]n2
1

11n2

2
,

F~pW ,n!5
k (D)~n!

upW u
arctanF upW u

k (D)~n!
G , ~12!

ñ* ~rW,n,t !5expS n2

2 Dn* ~rW,n,t !. ~13!

Equation~11! is the starting point for our further analytica
treatment of the trapping problem.

From an experimental standpoint, the determination of
trapping factorsgj @7# is of particular importance. These fac
tors are the eigenvalues for the spectral problem relate
the trapping equation@7#:

n* ~rW,n,t !5C j* ~rW,n!exp~2l j t !, gj51/l j . ~14!

The functionsC j* ~the eigenmodes! with the corresponding
eigenvaluesl j ~effective radiation rate constants! can be ob-
tained from Eq.~11! by setting]/] t→2l j and omitting the
source functionS:

L̂n@2l j111W~rW !#C̃ j* ~rW,n!5F~2 i¹W ,n!C̃ j* ~rW,n!,

C̃ j* 5expS n2

2 DC j* . ~15!

The trapping~Holstein! factorgj gives the rate of absorption
reemission processes for a photon in thej th mode. Note that
an exhaustive solution of the trapping Eq.~1! via the Fourier
method@2,7# requires us to find the complete set~spectrum!
of C j* andl j .

IV. EIGENMODES IN INFINITE SPACE

Let us consider the eigenvalue problem expressed by
~15! in the entire infinite space. This implies omitting th
extra quenching of excited atomsW ~see footnote 2!. The
main feature of Eq.~15! with W50 is that it allows anexact
separation of the spatial and frequency variables:

C j* ~rW,n!5exp~ ipW rW !wp~n!, wp~n!5expS 2
n2

2 D ñp~n!,

~16!

S 2
1

2

]2

]n2
1

1

2
n21

1

~12E!
Vp~n!D ñp~n!

5
11E

2~12E!
ñp~n! with p5upW u, ~17!

E5l j ,
3-3
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Vp~n!512F~pW ,n!

512
k0

(D)exp~2n2!

p
arctanF p

k0
(D)

exp~n2!G . ~18!

The function wp(n) is the real spectral emission profile
while the functionñp(n) can be regarded as a modified em
sion profile. Problem~17! can be classified as a perturbe
oscillator eigenproblem, though the spectral parameteE
5l j enters it in an intricate way. It should be noted that E
~17! can be considered as a wave equation and its solut
result in obtaining the set of dispersion curvesE5En(p) and
correspondingp-dependent eigenfunctionsñp(n).

First, we study the range of very large ‘‘reduce
opacities’’3 t r[k0

(D)p21→`. In this limit Vp(n)→0 and
one obtains, as the lowest approximation, the station
Schrödinger equation for the oscillator@18# with its fre-
quency and mass equal to unity:

S 2
1

2

]2

]n2
1

1

2
n2D ñp50~n!5Lñp50~n!, L5

11E

2~12E!
.

~19!

Consequently,Ln5n11/2, which means that

E2k5
n

n11
, n52k. ~20!

Since we consider only even spectral distribution functio
we take only even values of the ‘‘internal’’ state numbern.
The frequency eigenfunctions are the well-known oscilla
eigenfunctions@18#

un&5ñp50
(n) ~n!

5Hn~n!

5~21!n
1

p1/4

1

A2nn!
expS n2

2 D ]n

]nn
exp~2n2!. ~21!

For the lowest eigenstaten50, Eq. ~20! gives E050. This
state~the fundamental mode! describes a stable solution o
the radiation trapping problem. Fork.0, the corresponding
relaxation constantsE2k are in the same order of magnitud
of the Einstein coefficientA21 and therefore the correspond
ing eigenmodes decay promptly. This means that, in
large opacities limit, when a remarkable number of reem
sion processes occur, only the Doppler distribution cor
sponding to the pure Gauss spectral line profile

3In a finite volume, the momentump;L21 and t r.t5k0
(D)L,

where L is the characteristic size of the vapor cell. See also
quantization rules below, Eqs.~35!, ~40!, and~42!, connectingt r to
the conventional opacityt.
04270
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wp50
(n50)~n!5exp~2n2/2!ñp50

(n50)~n!5
1

p1/4
exp~2n2!

~22!

survives whatever the initial frequency distribution is. Th
statement was demonstrated numerically in@15#.

To investigate the case of finite values of the reduc
opacity t r5k0

(D)p21, we can apply the perturbation theor
and average Eq.~17! over the corresponding eigenfunctio
Hn(n):

E2k~p!5
2k1D2k~p!

112k
,

D2k~p!'D2k
(app)~p!

512E
2`

`

dn H2k
2 ~n!

k (D)~n!

p
arctanF p

k (D)~n!
G .

~23!

For the case of the lowest-frequency mode,k50, we obtain

E0~p!'ṼD~p!

[12
1

Ap
E

2`

`

dn exp~2n2!
k (D)~n!

p
arctanF p

k (D)~n!
G ,

~24!

in full agreement with the conventional theory for the com
plete frequency redistribution case@10#. In the region of
large values oft r(p→0), Eq.~23! has the following simple
asymptotic representation@8#:

D2k~p!.
Ap

22k12~2k!!

p

k0
(D) F lnS k0

(D)

p D G2k20.5

when

t r5k0
(D)p21@1. ~25!

The form of the solutions for Eq.~11! @Eqs.~14! and~16!#
implies that the eigenmodes describe the propagation
free quantum-mechanical quasiparticle@10# with the momen-
tum pW . This quasiparticle has an internal structure related
the variablen. The quasiparticle energiesE2k(p) depend on
the state of the internal motion (2k) and on the quasiparticle
momentump. The effective radiation decay rate constan
ln,p5En(p) correspond to different branches~classified by
the quantum numbern) of the dispersion curves for the wav
equation~17!. From this point of view, the spectral problem
for the CFR approach can be reduced to the study of a st
tureless quasiparticle problem; the corresponding radia
constantlp5E0

(CFR)(p)5ṼD(p) @Eq. ~24!# is the kinetic en-
ergy of the quasiparticle@10#.

The perturbation approach fails for the small reduc
opacity regionk0

(D)p21;1, whereE2k→1 for all k. This
limiting case (p→`) can be studied by setting

e

3-4
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E2k~p!.12k0
(D)p21G2k ~26!

and rewriting Eq.~17! as a spectral problem for the coeffi
cient G:

S 2
1

2

]2

]n2
1

1

2
n22

p

2G
exp~2n2!D ñt;0~n!

52
1

2
ñt;0~n!. ~27!

The solution ñt;0
(n50)(n) of Eq. ~27! for the fundamental

branch is presented in Fig. 1~the curve marked by 0!, where
the modified Doppler curve exp(2n2/2) is also shown~the
curveD). The correspondingG0 value turns out to be 1.17
while in the CFR case the formula for the dispersion l
ṼD(p), Eq. ~24!, givesG (CFR)5p/(2A2). Consequently,

E0~p!.121.17
k0

(D)

p
, ṼD~p!.121.11

k0
(D)

p
,

t r5k0
(D)p21,1. ~28!

In Fig. 2, we demonstrate the properties of the grou
mode (n[0) dispersion lawE0(p) as a function of the re-
duced opacityk0

(D)p21. Although the spectral emission pro
file wp

(n50)(n) deviates considerably from the Doppler cur
at small opacities~see Fig. 1!, the difference between dispe
sion curvesṼD(p) ~CFR approach, dashed line! and E0(p)
~solid line! turns out to be hardly noticeable~the deviation is
less than 12%!, as seen in Fig. 2.

The energiesE2k(p) are directly related to the spectr
emission profilewp(n). To show this, we project Eq.~17!
on the zero-level oscillator eigenfunction̂0u5H0(n)

FIG. 1. Modified emission profilesñp
(0)(n)5exp(n2/2)wp

(0)(n)
for different reduced opacitiest r5k0

(D)p21 ~as marked close to
each curve! in the case of the fundamental branchn50. The Dop-
pler profile exp(2n2/2) ~marked asD) corresponds to the complet
frequency redistribution approach. The dashed curve witht r52
was calculated for the ground mode in the center of a layer
numerical methods@23#.
04270
d

;exp(2n2/2) and take into account the identitŷ0u2L̂n

5^0u @see Eq.~19!#. We obtain

E2k~p!512
1

C2k
E

2`

`

dn wp
(2k)~n!

k (D)~n!

p

3arctanF p

k (D)~n!
G ,

C2k5E
2`

`

dn wp
(2k)~n!, ~29!

where C2k is the normalization constant for the emissio
profile in the 2kth dispersion branch. Thus, the differen
between the trapping factorsl j5E(p) for the CFR case@Eq.
~24!# and for the PFR case@Eq. ~29!# occurs due to the spec
tral emission profileswp

(2k50)(n), which are created by radia
tion transfer processes within the vapor cell.

V. TRAPPING FACTORS FOR A FINITE VAPOR CELL

The discussion of the spectral profileswp
(2k)(n) in infinite

space given above provides a basis for further discussio
radiation trapping in a finite cellV. To describe the radiation
processes in a cell, we set the quenching rateW(rW)5WV

equal to infinity outside the vapor cellV and to zero inside

y
FIG. 2. Dn(p) ~solid curves! as a function of the reduced opac

ity t r5k0
(D)p21 for different even branchesn ~as marked close to

each curve!. The solid curve withn50 corresponds to the groun
mode branch and is identical to the dispersion law functionE0(p).

The dashed line withn50 gives theṼD(p) function related to the
CFR approach and expressed by Eq.~24!. The other dashed curve
are obtained with the perturbation theory, Eq.~23!. The solid line

marked asL displays the ratioE0 /ṼD as a function of the reduced
opacity. Its approximate expression, Eq.~41!, is shown as a dashed
dotted lineL.
3-5
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V. As n* (rW,n,t)50 at any place whereWV5`, the integral
in Eq. ~1! can be extended to the entireR3 space. In this
section and in Appendix A, we show that the jump ofWV at
the vapor cell boundary]V entails the quasiparticle elast
reflections with the absolute magnitude of the momentump
5upW u being conserved. A typical quasiparticle trajectory h
a billiard-type structure and consists of straight lines c
fined insideV ~see Fig. 3!.

Since only the absolute valuep enters Eq.~17!, the fre-
quency dimension does not ‘‘feel’’ the existence of the c
boundary. This allows us to separate the spatial and
quency variables@compare with Eq.~16!#:

Cn,i* ~rW,n!.wp
(n)~n!Ni~rW !, p5upW i u. ~30!

The semiclassical demonstration of this important ansat
given in Appendix A. We emphasize that the frequenc
dependent functionswp

(n)(n) obey the same eigenproble
Eq. ~17! as for the case of infinite space sincep is constant.
The quantityp is a characteristic of the spatial part of th
problem and can be determined with the geometrical qua
zation technique@10,11# ~see below!. The semiclassica
quantization rules introduce a set of spatial mode indi
~quantum numbers! i 5$ i 1 , . . . ,i m%, which fix ‘‘permitted’’
values of the momentumpW 5pW i . It should be noted that the
number m of these indices universally coincides with th
space dimension.

The applicability range of the semiclassical treatm
given in Appendix A deserves a discussion. Equation~A2!
fails in the vicinity of a cell boundary where the quenchi
functionWV changes abruptly. It is shown in@10,19# that the
size of the spatial regions where the semiclassical form
need corrections~including caustic surfaces! turns out to be
small enough. To illustrate the accuracy of the factorizat
approach, we give, in Sec. VI, an example of numerical c
culation showing that Eq.~30! is rather accurate even in th
stringent case of small opacity.

A. Geometric quantization rules

The mode factorization expressed by Eq.~30! leads to an
integral equation for the total excited atom densityNi(rW) at
the pointrW for a given eigenmode. Integrating both sides

FIG. 3. Sketch of the quasiparticle billiard-type trajectory in t
vapor cell volume. The dashed lines in~a! indicate the positions of
the wave fronts after successive reflections~at pointsB1 , B2, and
B3). In ~b!, the quasiparticle reflection from a plane potential wal
shown.
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Eq. ~1! over the frequencyn, accounting for Eqs.~3!, ~30!,
and the eigenmode temporal dependence Eq.~14!, we obtain

2l jNi~rW !52WVNi~rW !1
1

Cn
E

R3
d3r 8Ni~rW8!

3E
2`

`

dn8wpi

(n)~n8!k (D)~n8!G̃n8~ urW2rW8u!,

~31!

Cn5E
2`

`

dn8wpi

(n)~n8![1⇔Ni~rW !5E
2`

`

dn C j* ~rW,n!.

Equation~31! has the alternative form of a stationary wa
equation@see Eqs.~9! and ~10!#

l jNi~rW !5WVNi~rW !1Vn
(pi )~2 i¹W !Ni~rW !, ~32!

Vn
(pi )~pW !512

1

Cn
E

2`

`

dn wpi

(n)~n!
k (D)~n!

upW u
arctanF upW u

k (D)~n!
G .

~33!

Analytical solutions of this equation are given in@10,11#
within a modified semiclassical approach, the so-called g
metric quantization technique~GQT!. We briefly formulate
the basic ideas of the GQT and apply them to the study
Eq. ~15!.

First, Eq.~32! is a 3D projection of the general Eq.~15!
and it leads to the same billiard-type construction of the q
siparticle trajectories as described in@11#. Indeed, the classi-
cal HamiltonianH (3D)

H (3D)~pW ,rW !5WV1Vn
(pi )~pW !, ~34!

corresponding to the wave equation~32! and governing the
quasiparticle dynamics, includes the quenching rate cons
WV as its potential energy. The above-mentioned jumps
this quantity at the cell boundaries create a potential w
confining the quasiparticle insideV. From a semiclassica
point of view, we can relate the search for the eigensoluti
of the wave equation~32! and the determination of the qua
siparticle eigenstates by imposing appropriate quantiza
conditions. The standing-wave solutions for an electrom
netic wave in a ‘‘resonator’’V can be treated in a simila
manner.

For the one-dimensional case, the simplest Bo
Sommerfeld quantization rule~BSR! @18# is adequate for ex-
tracting the quantized valuespi of the quasiparticle momen
tum. For instance, in a plane-parallel layer (2L/2,z
,L/2), whenpW is oriented along thez axis, the BSR deter-
mines the magnitude of the momentumpz

( i ) as follows@10#:

pi5pz
( i ) , 2E

2L/2

L/2

pidz52piL52p l z12DS~pi !,

i 5 l z50,1, . . . , ~35!

where 2DS is the phase jump due to the two reflections
the quasiparticle at the potential wallsz52L/2 andz5L/2.
3-6
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A more sophisticated procedure based on the Einst
Brillouin-Keller quantization conditions@20–22# is needed
for the determination of the quantized trajectory configu
tions for 2D and 3D vapor cells@11#.

All quantization conditions imply that, on a closed pa
G r , the total phase shift for the wave front, including t
shifts DS due to wall reflections and caustic surfaces sh
DScau, must add up to entire multiples of 2p,

R
Gr

pW i•drW2(
(r )

DS(r )52p l r . ~36!

The modal multi-indexi 5$ l r% consists of a set of intege
~quantum! numbers l r for the topologically independen
cyclesG r . As shown in@11#, the system of resonance equ
tions, Eq. ~36!, determines the absolute magnitude of t
quasiparticle momentumpi uniquely. The effective radiation
constantsln,i can be evaluated as the quasiparticle ene
H (3D), Eq. ~34!, within V (WV50):

ln,i5Vn
(pi )~ upW i u![En~pi !. ~37!

Note that both the superscript indexpi and the argumentp in
the functionVn

(pi )(upW u) have the same magnitudepi , and, in

accordance with Eqs.~33! and ~29!, Vn
(pi )(pi) is equal to

En(pi). This fact gives a quite natural quantitative conne
tion between the 4D and 3D descriptions of the quasipart
system.

B. Phase factors

Until now, the spatial evolution of the quasiparticle h
been considered independently from its motion with resp
to the frequency variable. The topology of the semiclass
trajectories insideV is not related to the kinetic energ
Vn

(pi )(p): for any functionVn
(pi ) the trajectory is the same~for

a given pi) and consists of the segments of straight lin
terminated at the reflection points belonging to the c
boundary]V. However, the eigenvalues and eigenfunctio
are sensitive to the kinetic-energy functionVn

(pi ) as the phase
factorsDS(r ) entering Eqs.~36! are actually functionals o
the emission profiles.

The phase jumps acquired by the quasiparticle wave fu
tion due to reflection of the classical particle from the boun
ary of the potential wall and from the caustics are discus
in detail in @10,11#. The magnitudes ofDScau are connected
only to certain topological invariants of the trajectories@20#
and can be evaluated explicitly@18#. The formula for com-
putation of the phase shiftDS acquired due to the quasipa
ticle reflection from a flat wall at an angleu, as is shown Fig.
3~b!, is derived in @11#. We restrict ourselves here to 1
geometries where the reflection angleu can be set equal to
zero. For the eigenproblem Eq.~32!, we obtain@10#

DS(n)~pi ,u50!5
p

2
2

2

pE0

1

lnS Ṽ~pi !2Ṽ~pir!

Ṽ~pi /r!2Ṽ~pi !
D 1

12r2
dr,
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Ṽ~p![Vn
(pi )~p!.En~p!, ~38!

DSapp
(n)~pi ,u50!5

p

2
@11gapp~pi !#,

where

gapp~p!5
1

2
p

d

dp
lnS p

dṼ~p!

dp
D . ~39!

It should be noted that the argument and the supersc
index in the functionVn

(pi )(pir) entering the integrand of Eq
~38! are different. These quantities are close to each othe
the vicinity of the point r51 where the substitution
Ṽ(pir)5Vn

(pi )(pir).En(pir) is valid @compare with the
identity in Eq.~37!#. On the other hand, the principal contr
bution to the integral is due to the region nearr51 because
of a strong singularity of the function 1/(12r2) in the inte-
grand. Attention must be paid, in this regard, to the qu
accurate approximate formula forDS(n), Eq.~39!, which was
derived in@10# by exploring the mentioned singularity.

Equations~38! and ~39! provide an analytical tool for
evaluation of the phase jumpDS(n). In particular, if the en-
ergy En(p) can be approximated asEn(p).a1bpg in the
vicinity of pi , then Eq.~39! givesDS(n)5p/2(110.5g). It
follows from Eqs.~23!, ~25!, and ~26! that such a depen
dence ofEn(p) is valid for small or large values of the
reduced opacity withgsm521 and g lr51, respectively.
Hence,

DS(n)5p/4, k0
(D)pi

21!1;

DS(n) 53p/4, k0
(D)pi

21@1

independent of the branch indexn. Figure 4 demonstrate
~solid curves! the behavior of the phase jumpDS(n) due to
the quasiparticle reflection from the cell walls as a functi

FIG. 4. Phase jump 2DS(n)/p ~solid curves! plotted as a func-
tion of the reduced opacityt r5k0

(D)p21. The quasiparticle is as
sumed to be reflected at the potential wall with the reflection an
u50. Data correspond to various branches of the dispersion fu
tions En(p), as marked in the figure. The dashed lines are ca
lated within the perturbation theory.
3-7
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of the reduced opacity. Due to the small difference betw
the magnitudes of the quasiparticle kinetic energyEn50(p)
~the DFR case! and ṼD(p) ~the CFR approach!, the corre-
sponding phase jumpsDS(n50) and DS(CFR) ~the dashed
curve marked asn50) are very similar.

Let us consider the quantization rule given by Eq.~36! for
two practically important 1D cell geometries: cylinder a
sphere of radiusR. Since these problems are effectively on
dimensional, the momentumpW is directed along the radius
p5pr . The Bohr-Sommerfeld rule, Eq.~36!, applied to the
quasiparticle radial motion gives the quantization conditio
determining the momentumpi :

pi5pr
( i ) , 2piR52p l r1DS(n)~pi ,u50!1DScau,

i 5 l r50,1, . . . , ~40!

DScau
(Cl)5p/2; DScau

(Sh)5p, l j5En~pi !, j 5$n,i 5 l r%,

where l r is the radial quantum number. The phase jum
DScau arises because the pointr 50 in a cylinder or in a
sphere is of caustic type~the particle is reflected atr 50
since formally its motion is restricted to the semiaxisr>0);
their magnitudeDScau

(Cl) ~for a cylinder! and DScau
(Sh) ~for a

sphere! can be obtained within the standard semiclass
framework@18#.

VI. RESULTS AND DISCUSSION

Let us first formulate an explicitrecipe for rapid calcula-
tion of the trapping factorsgn,i51/ln,i for the (n,i ) mode
Cn,i* within the GQT. We stress that, due to the frequen
redistribution, even in the simplest 1D geometries, a m
can be specified by, at least, two numbers,j 5$n,i %. Namely,
the indexn corresponds to the frequency dependence of
modal function, whereas the indexi accounts for its spatia
dependence. For 2D and 3D geometries, the multi-indei
incorporates other space quantum numbers@11#.

The two types of indices correspond with the two stag
in relaxation experienced by any initial distribution in th
process of radiation trapping. First, the prompt relaxation
a primary createdfrequency distributionto that of the ground
mode ~with respect to the frequency variables,n50) takes
place. The corresponding rate constants can be evaluate
effective radiation decay constantsln,i with even n52k.
The ln,i

21 values (g factors! for nÞ0 are close to the natura
radiative lifetime and weakly depend on the opacity of t
vapor cell.4 Second, aspatial relaxationof radiation in the
ground statesn50 occurs. At this stage, the modal functio
Cn50,i* 5wpi

(n50)(n)•Ni(rW) carries the time-independen

emission profilewpi

(n50)(n), whereas thegn50,i factors deter-

mine the spatial relaxation of excited atoms to the fundam
tal mode distributionNi 50(rW).

To evaluateln,i , one has to determine the quasipartic
quantized momentum valuesp5pi corresponding to the

4See Eq.~23! by taking into account thatl2k,i5E2k(pi).
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modeC j* . This quantity can be obtained from the quantiz
tion rules, Eqs.~35! and~40!. It is shown in Sec. V B that the
phase jumpDS entering Eq.~38! depends on the momentum
p. On the other hand, Eqs.~35! and ~40! exhibit a depen-
dence ofp on DS. In order to find self-consistent solution
for pi , one can use the following iterative procedure.

~i! One chooses the modal indexj 5$2k,i % of the mode
for which the computations must be performed, and setl z
5 i for a layer in Eq.~35! or l r5 i for the curved geometries
in Eq. ~40!. The fundamental mode corresponds ton5 i 50
~the ground-state level for the quasiparticle!.

~ii ! We recommend usingDS5p/2 as an initial value for
the phase jump.

~iii ! With this value forDS, from Eqs.~35! and ~40! one
obtainspi for the cell geometry under consideration.

~iv! With this pi , one can compute a new value ofDS
using Eq.~38! ~at the final step! or its approximation, Eq.
~39! ~at the first steps!. As an income, this procedure nee
the functionE2k(p), which can be provided by Eq.~17!. This
equation is a regular quantum-mechanical stationary w
equation@18# for a perturbed oscillator and it routinely de
termines the 2kth eigenvalueE2k . The dependenceE2k on
the momentump appears via the functionVp(n), which con-
tains the quantityp as a parameter. Fortunately, for the mo
interesting case of the ground levels (n50), the phase factor
DS practically coincides with the phaseDSCFR ~see the solid
and dashed lines markedn50 in Fig. 4!, which can be
evaluated from Eq.~39! or Eq. ~38!, the functionE0 being
determined by the explicit formula given in Eq.~24!.

~v! If the resulting value ofDS deviates significantly from
the previous one, one returns to step~iii ! ~typically, two or
three iterations are enough!.

~vi! Once a converged value ofDS is obtained,pi can be
determined for the (n,i ) mode.

~vii ! The trapping factorsgj can then be evaluated accor
ing to Eq. ~37!, as gj51/E2k(pi). As we mentioned above
~Sec. IV!, the functionE0(p) is very close to the function
ṼD(p), Eq. ~24!, for the CFR case~see also Fig. 2, curve
n50). The expression

E0~p!5L~p!ṼD~p!, L~p!5
112.42 ln~110.0885/p!

112.42 ln~110.113/p!
~41!

approximatesE0(p) within a 1% margin~see the curves
markedL in Fig. 2!. This approximation allows one to ca
culate the trapping factorsgn50,i ~covering the fundamenta
mode case,i 50) for 2D and 3D geometries, using the GQ
methods described in@11# by substitution of the energy
ṼD(p) with the functionE0(p).

~viii ! The obtainedpi value determines also the emissio
profile wp

(n)(n) as the 2kth eigenfunction of Eq.~17! with
p5pi . Note that modes belonging to the same branch~the
quantum numbern is fixed! have differentpi values for the
same opacityt and, therefore, their frequency dependenc
are quite different.

Finally, we point out one more important interpretation
the quantization rules. They establish the relationship
3-8
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tween the reduced opacityt r5k0
(D)p21 and the ordinary va-

por cell opacityt. For instance, in a layer, Eq.~35! reads

t/t r5p l z1DS(n)~t r
21 ,Q50!. ~42!

One can estimate the accuracy of the developed G
scheme with the data for the fundamental mode trapp
factorg0 ~note that consideration of the lowest mode, whi
corresponds to the quasiparticle ground state, provide
stringent test for the accuracy of semiclassical methods!. The
factorsg0 obtained within the GQT are plotted in Fig. 5 fo
1D geometries and are compared with results of numer
calculations~dots in Fig. 5, see also Table I!. One can infer
that the GQT provides values ofg0 within a 2–4 % error
margin for the layer. For other higher modes with mod
index i .0, the GQT gives substantially more accurate
sults.

FIG. 5. Fundamental mode trapping factorsg0,0 for a layer, an
infinite cylinder, and a sphere as a function of the opacityt. For the
layer with total lengthL, the opacity is calculated ast5k0

(D)L; t
5k0

(D)R for a cylinder or a sphere with radiusR. The dots represen
the results obtained by Monte Carlo simulations@13#.
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A comparison between the frequency distributionwp(n)
obtained within the GQT approach~solid curves! and the
numerical evaluation~dashed curves! of the frequency distri-
bution of excited atoms at the center of the layer fort r52 is
given in Fig. 1. We see that numerical and analytical res
are in good agreement. The assumption of mode factor
tion @see Eq.~30! in Sec. V#, which is most essential for the
semiclassical treatment, is confirmed by Fig. 6 and obtai
by using numerical methods developed in@23,24# on the ba-
sis of the split-propagation technique@24#.

We would like to discuss one more relevant feature of
radiation trapping phenomenon with the DFR mechanis
As mentioned above, the results of the CFR approach ca
obtained within our study with the first-order perturbatio
theory@see the discussion of Eqs.~21! and~23!#. However, it
is well known that, for large opacities, the main effects
radiation trapping processes are determined by the wing
the spectral line. From this point of view, the perturbati
theory is not an adequate tool for the evaluation of trapp

FIG. 6. Illustration of the validity for the factorization assum
tion, Eq. ~30!. A layer with total lengthL and opacityt53 is

considered. The frequency dependences ofC̃n50,i 50* (zm ,n) are cal-
culated numerically with the method@23# and are plotted~solid
curves! for five pointszm5m(L/10),m50, . . . ,4. Thedotted curve
corresponds to the layer boundary; the dashed curve represen
Doppler profile exp(2n2/2). All curves are normalized to unit valu
at the line center.
TABLE I. Eigenvalues ofl0,0 andl0,1 of the first two modes for a layer with total length 2L and their
comparison with numerical results. The opacityt is calculated ask0

(D)L.

Fundamental mode;n50, i 50 First odd mode;n50, i 51
Opacity GQT Num.@23# Num. @14# Opacity GQT Num.@23#

1.0 0.4792 0.4520 0.4690 1.0 0.7601 0.7628
2.0 0.3149 0.3090 0.316 2.0 0.5981 0.6009
3.0 0.2301 0.2283 0.228 3.0 0.4841 0.4872
5.0 0.1450 0.1449 0.147 5.0 0.3391 0.3424

10 0.07098 0.07076 0.0713 10 0.1799 0.1824
30 0.02047 0.02039 0.0204 30 0.05333 0.05412
50 0.01190 0.01105 0.0112 50 0.02948 0.02976
70 0.007773 0.007514 0.0077 70 0.01940 0.02018

100 0.005188 0.005001 0.0047 100 0.01322 0.01329
3-9



ts
e-

ac

n

c

c
file
d

ic

at
gs

r

-
u
o

es

th

, t
-

al
h

w

s
tial

or
r
x
tal

u-
u-

f
rplay

ive
ted
nd
ty
n
eds
yer

f the
ho-

e of
e
tri-

en

in
-
f
to

of

s
ntly,
the

ime

ove
ng
the

r-

ent

in-

he
the
in

BEZUGLOV, KAZANSKY, FUSO, AND ALLEGRINI PHYSICAL REVIEW A 63 042703
factors. Indeed, Eq.~17! does not allow one to describe i
solutionswp(n) as a perturbed function in the frequency r
gion of its exponential decrease@18#, i.e., in the line wings.
For this reason, the high accuracy of the CFR appro
seems to be accidental. If the dispersion branch indexn is
positive, then the evaluation of both the dispersion functio
En(p) and the phase jumpsDS(n) within the framework of
the perturbation approach is not quite accurate, as one
conclude from Figs. 2 and 4.

Continuing our discussion of the CFR approach accura
we address the basic structure of the emission pro
wp

(0)(n) in the small opacity case. Let us consider the mo
fied profile ñt;0

(n50)(n) determined by Eq.~27!. From the
variation principle, one can easily obtain that the best cho
among the Gaussian approximationsft;0

(n50)(n);exp(2an2)
is given witha'1.46. Such a representation is quite accur
at the line center. The modified profile at the line win
can be obtained by solving Eq.~27! in the classically forbid-
den region. Conventional semiclassical analysis@18# reveals
a new factor in the emission profilewt;0

(n50)(n)
;n21 exp(2n2)(n→`) as compared with the pure Dopple
profile exp(2n2); the additional factorn21 in the line wings
was first mentioned in@16#. Thus, we have obtained a no
ticeable narrowing of the emission line with simultaneo
deformation of its wings due to the Doppler mechanism
the frequency redistribution. One can clearly reveal th
trends in data presented in Fig. 1.

As shown above, the space relaxation constants for
CFR case and for the ground modes~with n50) in the PFR
case are quite similar to one another. On the other hand
prompt relaxation of initial frequency distribution to the low
est mode~in the DFR case! occurs in the scale of the natur
radiative lifetime. This can lead to specific features in t
time dependence of intensity of the escaping radiationJ(t)
under the conditions of after glow experiments. In Fig. 7,
give an example of the dependence ofJ(t) on the center

FIG. 7. Temporal behavior of the total intensityJ(t) of escaping
radiation for a layer. Initially the layer, with total lengthL and
opacity t530, is excited in its central partuzu,0.05L. The initial
frequenciesn i of the excitation are related to the opacitiest i

530 exp@2(ni2n0)
2#, which are marked close to each curve. T

dotted line corresponds to the initial frequency distribution with
Doppler profile. The inset displays an enlarged view correspond
to the initial stage of the process.
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frequencyn i of the primary spectral distribution. The atom
have been excited at the center of the layer with an ini
density distributionn* (z,n,t50)5(Lr)21Qr(z)d(n2n i).
HereQr(z) is Heaviside step function that has unit value f
uzu,rL/2 and zero value foruzu.rL/2. We choose the laye
opacity t5k0

(D)L530 and set the excitation zone inde
r50.1. The total radiation intensity is connected to the to
amount of the excited atoms N(t)
5*2L/2

L/2 dz*2`
` dn n* (z,n,t) by the relation J(t)

52dN(t)/dt. The calculations were performed using Fo
rier series@2,7# with the modes and trapping factors eval
ated by the GQT.

A specific growth of the intensityJ(t) at some stage o
the decay process can be considered as a result of inte
between two processes. At the first stage,t,1 ~we remind
the reader that the time unit in our study is the radiat
lifetime A21

21), of the radiation escape, photons are emit
only from the center of the layer without absorption, a
they have to fly along the optically thick path with opaci
t i5t exp@2(ni2n0)

2#. Simultaneously, due to the radiatio
trapping, the spatial diffusion of the excited atoms proce
and, at a certain moment, a considerable part of the la
becomes occupied by the excited atoms. Some fraction o
excited atoms is close to the layer borders and can emit p
tons outside the layer without capture. Thus, the increas
the intensityJ(t) is related both to the expansion of th
excitation zone and to the circumstance that the main con
bution to J(t) arises from secondary emitted photons~see
also @25#!. The decrease of radiation intensity begins wh
the excitation zone reaches the cell boundary.5

Another important feature in the decay curves shown
Fig. 7 is their deformation with deviation of the initial fre
quency detuningn i from the line centern0. The decrease o
the optical thicknesst i for primary escaping photons leads
an increase of the initial intensityJ(t50). On the other
hand, since the relaxation constantsl j5E2k.0 are close to
unity @see Eq.~23!#, the relaxation of the initial frequency
distribution to the Doppler profile leads to a coincidence
the DFR curves with the CFR curve~dashed line!. For large
detuning~small t i), however, the primary emitted photon
can excite the atoms far from the layer center. Conseque
the excitation zone reaches the layer walls faster, and
layer starts to emit photons in the fundamental mode reg
without any preliminary growth of the intensity.

Further PFR problems

The geometrical quantization technique developed ab
can be applied to a large variety of physically interesti
situations. Actually, this approach can be used to analyze
entire class of phenomena for which then dependence of the
propagatorGnn8(r) can be related to a second-order diffe

5It is noteworthy that various types of spectral lines have differ
relative probabilities for a photon to escape afterm elementary ab-
sorption processes. In the Lorentz line case, for instance, no
crease of light emission intensity occurs.

g
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ential operator or its Green function. We outline two e
amples of radiation trapping problems that can be conside
with this method.6

The representation@26,27#

k̄Rnn85d~n2n8!Fk~n8!1
~Dn (D)!2

2

]

]n8
k~n8!

]

]n8
G
~43!

is valid in the case of frequency diffusion in the spectral li
when the absorption/reemission processes are regarded
sentially coherent due to the natural broadening, while
redistribution due to the Doppler effects is relatively sm
@2#. In a vapor medium, this situation can occur in the int
mediate range of gas pressure@4# when the escape factors a
determined mainly by the natural Lorentz wings of the Vo
profile. In plasma physics, the relationDn (D),Dn (L) be-
tween Doppler and natural widths is typical for highly io
ized gases@27#.

Another important object that can be studied directly w
the developed methods is radiation transfer in a system
cold atoms in a magneto-optical trap~MOT!. For typical
MOT conditions@6#, the ratioDn (D)/Dn (L) is less than 0.05
and the diffusion approach@Eq. ~43!# reduces the computa
tion of the emission profilewp(n) in modes to the study of a
stationary wave equation similar to Eq.~17!. Moreover, the
GQT succeeds in solving the Streater equation@28#, which
seems to be more adequate@6# for describing radiation ef-
fects in cold atoms than the Payne equation@4# @Eq. ~1!#. The
Streater theory accounts for the fact of instantaneous~Ray-
leigh! photon scattering by introducing the additional term

E
2`

`

dn8E
V

d3r 8F k̄Rnn82
1

k̄
k~n!k~n8!G

3G̃n8~ urW2rW8u!
]

]t
n* ~rW8,n8,t ! ~44!

on the right-hand side of Eq.~1!.
In particular, for the Streater problem@28#, the dispersion

law E0(p) of the quasiparticle in the fundamental branch c
be obtained:

E0
21~p!5

1

pE2`

` dx

11x2 F12
k (L)~x!

p
arctanS p

k (L)~x!
D G21

,

k (L)~x!5
k0

(L)

11x2
. ~45!

Thus, the GQT allows us to analytically evaluate the en
spectrum of both the modes and the corresponding radia

6A wide range of corresponding problems can be found in plas
physics@3# in the theory of electron redistribution over the spa
and energy variables via the linear transport Boltzmann equati
04270
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trapping factors in a MOT that was studied experimentally
@6#. We plan to consider this very important problem in
separate publication.

VII. CONCLUSIONS

Integro-differential equations describing the radiation e
ergy transfer belong to a special class of equations that c
ers a much richer and broader range of physical phenom
than the local diffusion equations of the Fokker-Planck ty
In this paper, we have presented an analytical, rather a
rate ~albeit approximate!, method treating the basic trappin
equation as a generalized wave~diffusion! equation. Namely,
we have exploited the semiclassical geometrical quantiza
technique~GQT! for such problems.

Although our treatment has been applied mainly to
case of the pure Doppler redistribution function, the resu
obtained are expected to be quite general. The semiclas
study and independent numerical calculations reveal
qualitative feature of the trapping equations with PFR
namely the high accuracy of the mode factorization assu
tion expressed by Eq.~30! and interpreted as an approxima
separation of the spatial and frequency variables. This allo
one to reduce the general task to consideration of two p
metrically coupled problems.

~i! The first problem can be obtained after the spatial F
rier transform of the 4D trapping equation kernelin infinite
spaceis performed. Essentially, this problem deals with t
1D spectral problem in the frequency space. The spatial F
rier variablepW enters the wave like 1D equation obtained
a parameter and only with its absolute magnitudep5upW u.
This spectral problem determines both the emission profi
wp

(n)(n) and the dispersion lawsEn(p) of modes as a func-
tion of p. The frequency quantum numbern ~which must be
even! distinguishes different dispersion branches~excited
levels! of that 1D equation.

~ii ! The second part deals with the spatial variables of
trapping equation and relates the Fourier parameterpW to the
momentum of an associated quasiparticle moving in
space and confined in the vapor cell by the effective poten
walls. Remarkably, the dispersion lawEn(p) for this quasi-
particle is determined from the first part of the task describ
above. The total density of atoms at the pointrW, Ni(rW), sat-
isfies the conventional Holstein trapping equation with em
sion profilewp

(n)(n). The relevant parameterp can be deter-
mined within the GQT @10,11# by using generalized
quantization rules. The effective radiation trapping const
ln,i5En(pi) corresponding to the mode (n,i ) can be calcu-
lated analytically. A comparison of the results obtained w
available numerical data indicates the high accuracy of
GQT.

Therefore, we have obtained an answer for the lo
standing problem concerning the accuracy of the comp
frequency redistribution approximation in the case of Do
pler spectral redistribution. The statement derived previou
from various numerical simulations of the discussed p
cesses for the simplest experimental configurations of va
cells, namely thatCFR gives the trapping factors for funda
mental mode within a 12% accuracy level, has been con-

a

.
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firmed in our study. We have also explained a noticea
discrepancy between the actual emission profiles and
Doppler one. It is shown that the behavior of the emiss
profile in the wings of the spectral line is connected to
behavior of eigenfunctions for the perturbed oscillator pro
lem in the classically forbidden region. From this result,
follows that straightforward perturbation theory cannot
applied to the determination of the wing effects. This e
plains the deviations between some numerical observat
@13# and theoretical predictions@29# pointed out in@13#.

The geometrical quantization technique turns out to b
quite powerful technical tool for solving the radiation tra
ping problems both for CFR theory and for more realis
conditions of partial frequency redistribution. As the ne
stage in our study of the radiation trapping, we plan to ap
this method to radiation trapping phenomena in the case
which the diffusion mechanism@26,27# of the line wing for-
mation plays an important role. The corresponding exp
mental situations take place in different branches of phys
As an example, we mention the phenomena taking plac
plasma@27,30# and the processes relevant in a system of c
atoms in magneto-optical traps@6#.

It should be also noted that the solutions of certain lin
trapping problems play an important role in the construct
of fast analytical algorithms for investigation of the effec
described by nonlinear radiation transfer equations@31,32#.
The GQT method developed provides a powerful univer
tool for obtaining analytical information required in thos
studies@32#.
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APPENDIX: A STUDY OF THE GENERALIZED
4D WAVE EQUATION

BY THE SEMICLASSICAL APPROACH

We start by reiterating the basic Eq.~15! for the j th eigen-
mode,

L̂n@2l j111WV#C̃ j* ~rW,n!5F~2 i¹W ,n!C̃ j* ~rW,n!.
~A1!

Conventionally, a semiclassical approach implies the eig
function ansatz in the form of a product of rapidly an
slowly varying functions@18,33#:

C̃ j* ~rW,n!;Aj~rW,n!exp@6ıSj~rW,n!#. ~A2!

The quantitySj (rW,n), conventionally referred to as a shor
ened action, obeys the Hamilton-Jacobi equation@33#

H (4D)~pn ,n;pW !50.5
11l j2WV

12l j1WV
,
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where

pn5
]

]n
Sj~rW,n!, pW 5¹W rSj~rW,n!; ~A3!

H (4D)~pn ,n;pW !5
1

2
pn

21
1

2
n21

1

12l j1WV
Vp~n!,

p5upW u. ~A4!

In solving Eq.~A3! for Sj , we apply the Jacobi method@20#.
Namely, the functionH (4D) entering Eq.~A4! determines a
Hamiltonian function over the phase space$pn ,n;pW ,rW% for
the 4D classical system that we associate with a 4D qu
particle. The HamiliationH (4D) gives rise to the quasiparticl
trajectories$n(t),rW(t)% via the Hamiltonian motion equa
tions

d

dt
pW 52

]H

]rW
50,

d

dt
rW5

]H

]pW
5

1

12l j1WV

]

]p
Vp~n!

pW

p
,

~A5!

d

dt
pn52

]H

]n
52n2

1

12l j1WV

]

]n
Vp~n!,

d

dt
n5

]H

]pn
5pn . ~A6!

The trajectories$n(t),rW(t)% play the role of rays along which
the corresponding wave fronts are propagating.7 Accord-
ingly, the phase factorsSj (rW,n) are obtained as an actio
integral over these rays@20#:

Sj~rW,v !5E rW,v
@pW drW1pndn#. ~A7!

From Eqs.~A5!, it is clear that the momentumpW remains
constant within the vapor cellV ~whereWV50). In other
words, the quasiparticle moves freely~see Fig. 3! insideV.
The region outsideV, where WV is assumed to be very
large, is forbidden for classical motion8 and the quasiparticle

7For a detailed discussion of the relation between the quasipar
rays and the wave fronts, see@11,21#.

8As it follows from Eq.~A3!, the positive HamiltonianH (4D) de-
fined by Eq.~A4! has to get the negative magnitude20.5 if WV

5`.
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is reflected by the cell boundary]V. These reflections
change only the orientation of the momentumpW . Equation
~A6! determines the quasiparticle motion with respect to
frequency. It is not influenced by the space motion, since
p magnitude entering these equations does not vary. Th
d
e,

e

.

d

d

G

04270
e
e

re-

fore, in the HamiltonianH (4D), the spatial and frequenc
parts are independent. This statement leads to the conclu
that the phaseSj is the sum of two independent partsSj
5Sn(v)1Si(rW), which is equivalent to factorization, Eq
~30!, of the eigenmodeC j* .
s
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