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Solution of the Holstein equation of radiation trapping by the geometrical quantization technique.
[ll. Partial frequency redistribution with Doppler broadening
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We introduce an analytical method to investigate radiation trapping problems with Doppler frequency
redistribution. The problem is formulated within the framework of the Holstein-Biberman-Payne equation. We
interpret the basic integro-differential trapping equation as a generalized wave equation for a four-dimensional
(4D) classical systentan associated quasipartigl®Ve then construct its analytical solution by a semiclassical
approach, called the geometrical quantization techni@@T). Within the GQT, it is shown that the spatial
and frequency variables can be separated and that the frequency part of the excited atom distribution function
obeys a stationary Schiimger equation for a perturbed oscillator. We demonstrate that there is a noticeable
deviation of the actual spectral emission profile from the Doppler line in the region of small opacities. The
problem of calculating the spatial mode structure and the effective radiation trapping factors is reduced to the
evaluation of wave functions and quantized energy values of the quasiparticle confined in the vapor cell. We
formulate the quantization rules and derive the phase factors, which allow us to obtain analytically the com-
plete spectrum of the trapping factors in 1D geometfieger, cylinder, sphejeand other(2D and 3D
geometries when the separation of space variables is possible. Finally, we outline a possible extension of our
method to treat radiation trapping effects for more general experimental situations including, for instance, a
system of cold atoms.
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I. INTRODUCTION Recently, we have introducdd0,11] a universal, very
In an optically thick vapor, a resonant photon can beaccurate(albeit approximateanalytical method for solving
“trapped,” so that it escapes from the vapor cell only afterthe Holstein radiation trapping equati¢also known as the
several subsequent absorption-emission processes by the \Biberman-Holstein equation the so-called geometrical
por atomg1,2]. This radiation trapping process is an impor- quantization techniquéGQT). The GQT was developed for
tant part of various physical phenomena, such as plaf8as the investigation of integral rate equations for the excited-
and optical engineering probleri2]. Under laboratory con- state density in vapor cells of various shapes under the as-
ditions[4,5], the radiation trapping can strongly influence thesumption of CFR. The GQT exploits the mathematical
spectral and temporal features of the radiation emerging frorequivalence of the Holstein equation with the Schinger
the cell and should be carefully considered in the quantitativequation of a classical Hamiltonian systéatso known as a
analysis of experimental dafa,3,6] involving resonance ra- quasiparticlg subjected to the canonical quantizatidi®).
diation. However, solving the integro-differential equationsWithin the GQT, one obtains the mode structure and the
describing the radiation trapping is a difficult mathematicalradiation escape factors as the wave functions and the eigen-
problem, even in the most simple case of a two-level atonvalues of the Schidinger-like equation. In the present paper,
model with the assumption of complete frequency redistribuwe extend the GQT to situations with partial frequency re-
tion (CFR) for reemitted photong3,7]. The main difficulty is  distribution (PFR of reemitted photons. We restrict our-
due to divergence of the mean free path of the phof8fis selves to the case in which the redistribution function is due
which prevents any approximation of the integral trappingto the Doppler effect only, for which the abbreviation DFR is
equations by a local diffusion equation of the Fokker-Plankused hereafter. This allows us to give a closed and relatively
type. Despite the intensive investigations during the past 5@ompact presentation of the GQT.
years, no universally applicable analytical solution could be With the developed analytical technique, we confirm
found. Even the study of the elementary one-dimensionasome conclusions derived previously from numerical studies
geometries(infinite layer, infinite cylinder, spheyeof the  [13-15 or obtained with mixed analytical-numerical meth-
vapor cell has resulted in a substantial number of very speads[16]. We show that the deviations between the trapping
cific approximate techniques for different astrophysical andactors evaluated within the CFR assumption and the data
physical problem$2,8,9. obtained for the case of DFR aedwayswithin 12% mar-
gins. At the same time, we demonstrate that the actual spec-
tral emission profiles in the lowest eigenmodesth respect
*On sabbatical leave from Dipartimento di Fisica della Materia eto the frequency variablecan deviate considerably from the
Tecnologie Fisiche Avanzate, UniversitaMessina, Salita Sperone Doppler profile. We discuss also the higher-mode relaxation
31, 198166 Sant’Agata, Italy. effects, addressing the temporal behavior of the escaping ra-
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diation in after-glow experiments. An anomalous structure in an*(f,v,t)
the time dependence of the radiation intensity during the first ~— =~ Aan™ (F,1,1) = A W(F)n* (7, 1)
stage of the emission of trapped light is shown to be due to

some competing processes. A .

The paper is organized as follows. In Sec. Il, the master +A21f_md” fﬂd MG, (=)
equation determining the dynamics of radiation trapping pro- ) R
cesses with the Doppler frequency redistribution function is Xn*(F',v',t)+S(f,v,1). (1)

discussed. In Sec. lll, the reduction of the master equation trllhe product,yn* (F, ».t)AVdy gives an amount of photons
21 (R g)

the form of a 4D(one frequency and three spatial variables spontaneously emitted per one second within the frequenc
generalized wave equation is described. In Sec. IV, the mas? Y P q y

T . . |Hterval [v;v+dv] by the excited atoms contained in the
ter equation is analyzed and the explicit representations bot a1 e . .
for the trapping factors and for the frequency distributionvOIume AV.’ Azy s the lifetime of th_e exmtgd state with
respect to its spontaneous decag(r) is the dimensionless

functions in the modes are obtained for the case of an infi- - . ; -
nitely extended medium. In Sec. V, we introduce the GQ ntensity of the excited atoms quenching by unspecified pro

. . . ._cesses of nonradiative decay. Here we assume that the func-
for the study of finite gas cells of various geometries. Th|5:tiOn W(F) provides the vanishing of the density function

technique has begn shown to be rathe'r agm[feﬁel]} 'for n*(F,v,t) outside a given space cef2.2 The propagator
the case of CFR; its accuracy for_ DFR is c_ilscussed in deta@;wl(“»_ 7'|) describes the photon transfer from an emitting
here._ The _GQT relates the radiation tr_applng proble_m to thetom to an absorbing one. The ter®(r,»,t) provides a
consideration of the motion of a classical quasiparticle con{nonstationarysource of the excited atoms. In Ed), we do
fined in the cell. It is shown that the GQT allows one to not consider explicitly the polarization and alignment phe-
separate effectively the frequency and spatial variables. Theomena discussed by D'yakonov and Pef&¥]. These phe-
generalized quantization rules are formulated and the relnomena can be studied within the present approach by treat-
evant phase factors are calculated. Finally, we apply théng n*(F,v,t) not as a scalar quantity, but as the
GQT for the construction of semiclassical analytical reprecorresponding spherical tens@ee alsd13)).

sentations of the effective radiation constants and the fre- The problem we discuss is determined by the following
quency distribution functions in the eigenmodes. Section Viformula for the propagatd®,, (p):

contains a description of the ready-to-use recipes for evalu- L

ating both the trapping factors and the emission profiles. We G, =kR,, G, (p) with

compare the results obtained within the present method with

numerical data of previous investigations and demonstrate ~ 1 , — [~

that our results are accurate within 2—4 % for the fundamen-  C»(P)= Arrp? exfl—pr(v)], k= fﬁmd” «(v),

tal mode and even better(0.5%) for higher-order modes. 2)
To emphasize some specific features of the radiation transfer

with PFR, we perform a special study of the temporal depenwhere R,/ is the angle-averaged frequency redistribution
dence of the emergent radiation intensity in an after-glowfunction andx () is the spectral absorption coefficient. The
experiment. Some possibilities for further development ofUniversal identity4]

the described approach are outlined. Section VII summarizes "

the main aspects of the GQT and its relation to the general ?f dvR,, =«(v") (3
PFR problems. A semiclassical discussion, aimed at confirm- -

ng tlhe |dte2 ?f Eze fret(qjgegq: and dsp?nal ygrlqbles Sﬁf’ aratL.Ori1mplies that the effective photon absorption occurs only via
IS relegated to Appendix A. In order to minimize mathematl-y, photon reemission with changed frequency.

cal details, references will be made to the original literature For the case of pure Doppler broadening, the conventional

whenever possible. _ _representations for the functions involved are as follptls
We would suggest that those readers interested only in the

ready-to-use analytical recipes for an efficient calculation of k(1)=kP()=cP exp—1?), «k=Vrc?, (@
the trapping factors restrict themselves to Sec. Il and Sec. VI.

R, = zerf(max|v].|v'[}). (5

II. FORMULATION OF THE PROBLEM The Doppler absorption coefficiem()D) in the center of the
spectral line and the dimensionless reduced frequency

The fundamental problem we address in this paper can be
illustrated by the basic equationd,2] mastering the time
evolution of the frequency-dependent density function of the !In what follows, we sef\,;= 1, fixing the natural for the problem
excited atom#* (F,v,t) over the space coordinafeand the time scale.
frequencyr (which is directly related to the velocity distri- 2This allows one to integrate over the infinite three-dimensional

bution of the atoms in the case of Doppler broadehing space in Eq(1) by settingW very large outside the vapor c¢ll0].
See also Sec. V and Appendix A.
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measured from the line center in the Doppler width units,
Av(®) are used in Eqg4) and(5). It should be noted that

nontrivial evolution occurs only for the even, over-the-

L, Ti* (F,,1) =D (—iV,»)Ti* (F,v,t)

Jd
—+1+W(F
S LW

frequency variable, component of the functioh(r, »,t). +L,8(F,v,1), (11)
IIl. REDUCTION OF THE TRAPPING EQUATION i 1 92 1+ 12
First, let us convert the trapping integral equati@nwith o252 27
the Doppler redistribution functiotb) in the form of a gen-
eralized differential(wave equation. Considering the fre- ) () 1Bl
quency redistribution kerne®,,,, we can easily verify the e(p,v)= ol rcta eIk (12
following identity [4]: P
V2
d 1 ﬁ*(r*,v,t)=exr{—>n*(F,v,t). (13
_ 2y JE— o ’ 2
&VEX[XV )07VRW \/;[5(1) v')+o(v+v')]. (6)

Equation(11) is the starting point for our further analytical
treatment of the trapping problem.
From an experimental standpoint, the determination of the

Equation(6) can be represented in the form

192 142 P2 trapping factorgy; [7] is of particular importance. These fac-
—=—+ exp = |R,. tors are the eigenvalues for the spectral problem related to
20,2 2 2 : ey
the trapping equatiofi7]:
1 V2 7 —\*(F -\ =1\
2\ 2

The functions\Ifj* (the eigenmodeswith the corresponding
Hence, the kerneR,,. in Eq. (5) is directly related to the ei_genvalueskj (effective radiation rate constamtsa_n _be ob-
Green function of the second-order differential operator oftained from Eq(11) by settings/dt— —\; and omitting the

guantum oscillator type.

In Eq. (1), the integral operator over space variables can
be converted into the form of a generalized differential op-

erator. Formally, the general integral convolution operéor

éf(F):fR3d3r’G(|F—F’|)f(F’) (8)

is interpreted as the corresponding operator function over th

momentum operatoﬁz —iV [10,17, and so it can be re-
written as follows[10]:

f3d3r’G(|F—F’l)f(F’)=G(F)(—iﬁ)f(F),
R

G<F>(|5)Ef &% G(F")explipr). (9)
R

In the case of Eq(l), the representation for the Fourier

transformG(F)(p) of the kernal functionG, , Eq. (2), is
well known[8]:

. p=Ipl. (10

P p)= 1 arctan ———
: P xO(v")

The spatial isotropy of the task under consideration mani
fests itself in the independence of the functi'ét‘f,) of the
momentum direction. With the identities Eqg), (9), and

(10), the trapping master equatioh) turns out to exhibit the
structure of a diffusion-type equation:

source functior:

L= N+ 1+ WD) W E (F,n) =@ (—iV, )W (F,0),

;{v

2

P =ex (15)

e
The trappingHolstein factorg; gives the rate of absorption/
@emission processes for a photon in jiemode. Note that
an exhaustive solution of the trapping Eij) via the Fourier
method[2,7] requires us to find the complete $spectrum
of ¥} and\;.

IV. EIGENMODES IN INFINITE SPACE

Let us consider the eigenvalue problem expressed by Eq.
(15 in the entire infinite space. This implies omitting the
extra quenching of excited atonW (see footnote 2 The
main feature of Eq(15) with W=0 is that it allows arexact
separation of the spatial and frequency variables:

2
WE(F,v)=exp(ipF) ep(v), <pp<v)=exp(—% Tip(¥),
(16)

19 1, 1 5

_Eﬁ EV +(1_—E)Vp(1}) np(V)

1+E _ . .

:mnp(v) with  p=|p, (17)
E=\,

]
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Vp(v)=1-®(p,v)

— -~ = _1
D 2 ‘PEJn;oO)( v)=exp(—v%/2) nE)n= (v)= exp(—v?)
kPlexp(— v?)
— " arcta

77_1/4

lexp(vz) . (18 (22)

<

survives whatever the initial frequency distribution is. This

The function ,(v) is the real spectral emission profile, Statement was demonstrated numerically1f].

while the functiorifiy(v) can be regarded as a modified emis- TO_ mvestug;teﬁ'ihe case of finite values of the reduced
sion profile. Problen(17) can be classified as a perturbed OP&City .=« 'p ~, we can apply the perturbation theory
oscillator eigenproblem, though the spectral paraméer and average Eq17) over the corresponding eigenfunction
=\; enters it in an intricate way. It should be noted that Eq.Hn(V):
(17) can be considered as a wave equation and its solutions
result in obtaining the set of dispersion cunges E,(p) and Eoy
. X L 2k 1+2k

corresponding-dependent eigenfunctiofig,(v).

First, we study the range of very large “reduced (app),
opacities’® 7,=«{”p 1. In this limit V,(»)—0 and Aa(p)=A%™(P)
one __obtains, as the lowest approximation, the stationary . <©)(»)
Schralinger equation for the oscillatdrl8] with its fre- :1—f dvH3(v) arcta{
guency and mass equal to unity: — p

_ 2k+ Az (p)

K<D><v>]'

(23
_ 1+E
C2(1-E)°

19 Ey(p)=Vp(p)

El—ifx dv exp(— v?) arcta L
e )

E2k=L, n=2k. (20) (24)

in full agreement with the conventional theory for the com-
plete frequency redistribution cag&0]. In the region of
large values ofr,(p—0), Eq.(23) has the following simple

( ,:(D))
|n

o 11 2\ D r=xkPp>1. (25)
=(—1)"— ——expg 5 | —exp(—1?).
744 \/2"n1 2/ 9"

10 1
( -5 57t > vz)'ﬁp=o( v)=ATf,_o(v), A For the case of the lowest-frequency mokle,0, we obtain

2 gv

ConsequentlyA ,=n+1/2, which means that «P(v)

Since we consider only even spectral distribution functions
we take only even values of the “internal” state numimer
The frequency eigenfunctions are the well-known oscillato

eigenfunctiong 18] \/; 2k—0.5

p
(2k)! kP

A(P)= 53
|n>:’ﬁén:)o(7/) 2

=H,(v) when

The form of the solutions for Eq11) [Eqgs.(14) and(16)]
implies that the eigenmodes describe the propagation of a
For the lowest eigenstate=0, Eq. (20) givesE,=0. This  free quantum-mechanical quasiparticl®] with the momen-
state(the fundamental modedescribes a stable solution of tum . This quasiparticle has an internal structure related to
the radiation trapping problem. F&r>0, the corresponding the variablev. The quasiparticle energiés, (p) depend on
relaxation constantg,, are in the same order of magnitude the state of the internal motion k2 and on the quasiparticle
of the Einstein coefficienf,; and therefore the correspond- momentump. The effective radiation decay rate constants
ing eigenmodes decay promptly. This means that, in the., ,=E,(p) correspond to different branchéslassified by
large opacities limit, when a remarkable number of reemisthe quantum number) of the dispersion curves for the wave
sion processes occur, only the Doppler distribution correequation(17). From this point of view, the spectral problem
sponding to the pure Gauss spectral line profile for the CFR approach can be reduced to the study of a struc-
tureless quasiparticle problem; the corresponding radiation

constant\ ,= EBCF_R)(p)fT/D(p) [Eq. (24)] is the kinetic en-
%In a finite volume, the momentup~L % and r,~7=«{L,  €rgy of the quasiparticlg10]. _
where L is the characteristic size of the vapor cell. See also the The perturbation approach fails for the small reduced

quantization rules below, EqE35), (40), and(42), connectingr, to ~ Opacity regionk{Pp~t~1, whereE,—1 for all k. This
the conventional opacity. limiting case p— ) can be studied by setting
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FIG. 1. Modified emission profile&{”(v) = expe#2) (" (v) 0.0
for different reduced opacities, = «")p~* (as marked close to . . . . .
each curviin the case of the fundamental brantk 0. The Dop- 0 5 10 15 20

pler profile expE12/2) (marked aD) corresponds to the complete
frequency redistribution approach. The dashed curve with?2
was calculated for the ground mode in the center of a layer by FIG. 2. A

numerical method23). »(p) (solid curve$ as a function of the reduced opac-

ity rr:KgD)p’l for different even branches (as marked close to
(D)1 each curvg The solid curve witm=0 corresponds to the ground
Ea(p)=1—xy P T (26) mode branch and is identical to the dispersion law funcEg(p).
. _ The dashed line witm=0 gives theV(p) function related to the
and rewriting Eq.(17) as a spectral problem for the coeffi- ~gg approach and expressed by E2f). The other dashed curves

cientI™: are obtained with the perturbation theory, E&3). The solid line
) marked as\ displays the ratic,/Vy, as a function of the reduced
1 n 1 2 lexq ) | o(v) opacity. Its approximate expression, £4j1), is shown as a dashed-
2 992 2 2r dotted lineA.

- 27) ~exp(—1#2) and take into account the identil§D|2|:V
2 O =(0| [see Eq(19)]. We obtain

The solutioni""(») of Eq. (27) for the fundamental 1 (= (2K) «®O)(w)
branch is presented in Fig.(the curve marked by)pwhere Ea(p)=1- Coxe Jlmd” ¢p (V) p
the modified Doppler curve exp(?/2) is also showr(the

curveD). The correspondind’y value turns out to be 1.17,

while in the CFR case the formula for the dispersion law xarctar{

=~ K(D)(V) !
Vo(p), Eq. (24), givesT'(°R=7/(2,2). Consequently,
(D) ~ (D) _ * (2
EO(p)Zl_l'N%’ VD(D):1_1-11K0p_7 Cax fﬂcdv:pp ), (29

where C, is the normalization constant for the emission
profile in the Xth dispersion branch. Thus, the difference
between the trapping factoxs=E(p) for the CFR casgEq.

In Fig. 2, we demonstrate the properties of the grounq4)] and for the PFR cad&q. (29)] occurs due to the spec-
mode (1=0) dispersion lawEy(p) as a function of the re- .o emissjon profileg =) (»), which are created by radia-
duced opacity”’p~*. Although the spectral emission pro- o transfer processgs within the vapor cell.
file ¢~ (v) deviates considerably from the Doppler curve
at small opacitiegsee Fig. 1, the difference between disper-

sion curvesVp(p) (CFR approach, dashed linand Eq(p)

(solid line) turns out to be hardly noticeablthe deviation is The discussion of the spectral profile§™(») in infinite

less than 12% as seen in Fig. 2. space given above provides a basis for further discussion of
The energieE,,(p) are directly related to the spectral radiation trapping in a finite cefl. To describe the radiation

emission profilep,(v). To show this, we project E¢17) processes in a cell, we set the quenching i) =W,

on the zero-level oscillator eigenfunctiodO|=Hgy(v) equal to infinity outside the vapor cdll and to zero inside

=xPp i<, (28

V. TRAPPING FACTORS FOR A FINITE VAPOR CELL
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Eqg. (1) over the frequency, accounting for Eqs(3), (30),
and the eigenmode temporal dependence(E4), we obtain

1
—NjNi(F) = —WuN;(F) + C. fdegr,Ni(P)

X Joc dV’cpg:)(v')K(D)(V’)éyr(W— '),
(b) (32)

FIG. 3. Sketch of the quasiparticle billiard-type trajectory in the Ch= f dV'ﬁDg:)(V/)El‘:’Ni(F):f dV‘I’J* (F,v).
vapor cell volume. The dashed lines(& indicate the positions of - -
the wave fronts after successive reflectig¢ats pointsB;, B,, and
Bs). In (b), the quasiparticle reflection from a plane potential wall is
shown.

Equation(31) has the alternative form of a stationary wave
equation[see Eqgs(9) and(10)]

NL(F) — (7 (P, _ i & \NI.(7
Q. Asn*(f,v,t)=0 at any place wheré/, =, the integral A NI()=WaNi(F) +VH(=TVING(D), (32)

in Eq. (1) can be extended to the entiR® space. In this o R

section and in Appendix A, we show that the jump\igf, at V(5 =1— if“ dv o™() «©)() arcta |p|

the vapor cell boundaryQ) entails the quasiparticle elastic "n ChlJ-w p 19| «®)()

reflections with the absolute magnitude of the momenpum (33

=|p| being conserved. A typical quasiparticle trajectory has

a billiard-type structure and consists of straight lines con-Analytical solutions of this equation are given 0,11

fined insideQ) (see Fig. 3. within a modified semiclassical approach, the so-called geo-
Since only the absolute valygenters Eq.(17), the fre-  metric quantization techniqugsQT). We briefly formulate

quency dimension does not “feel” the existence of the cellthe basic ideas of the GQT and apply them to the study of

boundary. This allows us to separate the spatial and freEq. (15).

guency variablegcompare with Eq(16)]: First, Eq.(32) is a 3D projection of the general E(L5)
and it leads to the same billiard-type construction of the qua-
W (F,v)= (PE)H)(V)Ni(F)- p=|pil. (30)  siparticle trajectories as described[I]. Indeed, the classi-

cal HamiltonianH (3P

The semiclassical demonstration of this important ansatz is
given in Appendix A. We emphasize that the frequency-
dependent functiongag‘)(v) obey the same eigenproblem

Eq. (17) as for the case of infinite space singés constant. S - )
Tﬂe(ql?antityp is a characteristic ofpthe sprgtial oart of the quasiparticle dynamics, includes the quenching rate constant
W, as its potential energy. The above-mentioned jumps of

problem and can be determined with the geometrical quanti;

zation technique[10,11] (see below. The semiclassical this quantity at the cell boundaries create a potential well
e e ) . . . _confining the quasiparticle insid@. From a semiclassical
guantization rules introduce a set of spatial mode indices ". . . !
(quantum numbeys ={i i, which fix “permitted” point of view, we can relate the search for the eigensolutions
— 11y e imy,

values of the momenturi=p, . It should be noted that the of the wave equatio32) and the determination of the qua-

I . L ; siparticle eigenstates by imposing appropriate quantization
numberm of these indices universally coincides with the conditions. The standing-wave solutions for an electromag-
space dimension.

. . . . netic wave in a ‘“resonator’() can be treated in a similar
The applicability range of the semiclassical treatment

given in Appendix A deserves a discussion. Equatiag) manner.

fails in the vicinity of a cell boundary where the quenching Soanonzerth(Ied OSaer;gizrgggﬁifggséﬁfé] ifshSdeSiLTaptf?ér Ex?hr_
functionW,, changes abruptly. It is shown j&0,19 that the q 9

size of the spatial regions where the semiclassical formul yacting the quantized valugs of the quasiparticle momen-

L . . 8 m. For instance, in a plane-parallel layer-I(/2<z
need correctiongincluding caustic surfaceésurns out to be !

small enough. To illustrate the accuracy of the factorization<.|‘/2) ,ﬂ\:vhenp |§toor||entf;jhalong theu;);)s, th? II?SR (jlcztgr-
approach, we give, in Sec. VI, an example of numerical calMines the magnitude of the momen as follows[10]:

culation showing that Eq.30) is rather accurate even in the L2
stringent case of small opacity. pi=pd, ZJ pidz=2p;L=27l,+2A8(p)),
~L/2

2o\ Pi),/ =
HEP(B,7) =W+ V" (p), (34)

corresponding to the wave equati(82) and governing the

A. Geometric quantization rules i=1,=0,1,..., (35)

The mode factorization expressed by E8Q) leads to an
integral equation for the total excited atom dendikyr) at where 2AS is the phase jump due to the two reflections of
the pointr for a given eigenmode. Integrating both sides ofthe quasiparticle at the potential wallss —L/2 andz=L/2.
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A more sophisticated procedure based on the Einstein- R B B B AR
Brillouin-Keller quantization condition$20—27 is needed ‘
for the determination of the quantized trajectory configura-
tions for 2D and 3D vapor cellgl1].

All guantization conditions imply that, on a closed path
I',, the total phase shift for the wave front, including the
shifts AS due to wall reflections and caustic surfaces shifts
AS.,,, must add up to entire multiples ofm2

2AS M/

35 pi-di— > ASpy=2ml,. (36) :
ry (r) 04 bl v v i
0.1 1 10 100 1000

The modal multi-indexi={l,} consists of a set of integer r
(quantum numbersl|, for the topologically independent
qyclesl“,. As shown in_[ll], the system of resonance equa- i, of the reduced opacity,:KgD)p’l. The quasiparticle is as-
tIOhS,. qu (36), determines Fhe absolute magthde, O,f thesumed to be reflected at the potential wall with the reflection angle
quasiparticle momenturp; uniquely. The effective radiation  y_q pata correspond to various branches of the dispersion func-
co(ggtants}\n,i can be evaluated as the quasiparticle energyions £, (p), as marked in the figure. The dashed lines are calcu-
RS, Eq. (34), within ) (W, =0): lated within the perturbation theory.

FIG. 4. Phase jump 2S™/ s (solid curve plotted as a func-

Nni= V(B =En(p)). (37) V(p)=V™(p)=E,(p), (39)

Note that both the superscript indpxand the argumerg in

(P () ; :
the functionV (| f|) have the same magnituge, and, in
accordance with Egqs33) and (29), foi)(pi) is equal to where
E.(p;). This fact gives a quite natural quantitative connec-

v
ASPi,0=0)= 5 [1+ yapf P)],

tion between the 4D and 3D descriptions of the quasiparticle 1 d dV(p)
system. ’)/apr(p) = Epd—pln d—p . (39
B. Phase factors It should be noted that the argument and the superscript

Until now, the spatial evolution of the quasiparticle hasndex in the functionV,™ (pip) entering the integrand of Eq. -
been considered independently from its motion with respect38) are different. These quantities are close to each other in
to the frequency variable. The topology of the semiclassicail® vicinity of the point p=1 where the substitution
trajectories inside() is not related to the kinetic energy V(pip)ZVﬁpi)(pip)ZEn(pip) is valid [compare with the
Vﬁlpi)(p): for any functionVE]pi) the trajectory is the sam@éor  identity in Eq.(37)]. On the other hand, the principal contri-

a givenp;) and consists of the segments of straight linesPution to the integral is due to the region near 1 because
terminated at the reflection points belonging to the cellof @ strong singularity of the function 1/¢1p?) in the inte-
boundaryd€). However, the eigenvalues and eigenfunctionsgrand. Attention must be paid, i”nthiS regard, to the quite
are sensitive to the kinetic-energy functigff’ as the phase 2ccurate approximate formula farS™, Eq.(39), which was

. . derived in[10] by exploring the mentioned singularity.
factorsASm enterlng Eqs(36) are actually functionals of Equations(38) and (39) provide an analytical tool for
the emission profiles.

evaluation of the phase jumpS("™. In particular, if the en-

The phase jumps acquired by the quasiparticle wave func=

; ; . : ergy En(p) can be approximated &s,(p)=a-+bp” in the
tion due to reflection of the classical particle from the bound icinity of p. . then Eq.(39) gives ASM = 7/2(1+0.5y). It

ary of the potential wall and from the caustics are discusse
in detail in[10,11]. The magnitudes oAS.,, are connected ollows from qu‘:"(23).’ (25), and (26) that such a depen-
dence ofE,(p) is valid for small or large values of the

only to certain topological invariants of the trajectorj@§)] duced ity Withve— — 1 and v —1 tivel
and can be evaluated explicitf{t8]. The formula for com- {_'ee:gee opacity: withysp= and y=1, respectively.

putation of the phase shiff S acquired due to the quasipar-
ticle reflection from a flat wall at an angtg as is shown Fig. AS) = /4
3(b), is derived in[11]. We restrict ourselves here to 1D '
geometries where the reflection anglecan be set equal to
zero. For the eigenproblem E2), we obtain[10]

K§pr <1,

ASM =37/4, «Ppt>1

2 (1 [ V(p)—V(pip) 1 independent of the branch index Figure 4 demonstrates
AS™(p;,6=0)= = — _J' Inl = (i (~p|p ) dp,  (solid curve$ the behavior of the phase jumpS™ due to
2 wlo \V(pi/p)—V(p;))1—p? the quasiparticle reflection from the cell walls as a function
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of the reduced opacity. Due to the small difference betweemnode\lf}* . This quantity can be obtained from the quantiza-
the magnitudes of the quasiparticle kinetic enekgy o(p) tion rules, Eqs(35) and(40). It is shown in Sec. V B that the
(the DFR caspand Vp(p) (the CFR approadhthe corre-  phase jump\S entering Eq(38) depends on the momentum
sponding phase jumpAS("=9 and AS(C*R (the dashed p. On the other hand, Eq¢35) and (40) exhibit a depen-
curve marked ag=0) are very similar. dence ofp on AS. In order to find self-consistent solutions
Let us consider the quantization rule given by E6) for ~ for p;, one can use the following iterative procedure.
two practically important 1D cell geometries: cylinder and (i) One chooses the modal indgx{2k,i} of the mode
sphere of radiuf. Since these problems are effectively one-for which the computations must be performed, and kgets
dimensional, the momentur is directed along the radius: =i for a layer in Eq.(35) or |, =i for the curved geometries
p=p,. The Bohr-Sommerfeld rule, E436), applied to the in Eq. (40). The fundamental mode correspondstei =0
quasiparticle radial motion gives the quantization conditiongthe ground-state level for the quasipartjcle

determining the momenturm, : (iil) We recommend using S= 7/2 as an initial value for
_ the phase jump.
pi=p!”, 2pR=27l,+AS"(p;,0=0)+ASeu (iii ) With this value forA'S, from Egs.(35) and (40) one
obtainsp; for the cell geometry under consideration.
i=1,=01,..., (40 (iv) With this p;, one can compute a new value AS

using Eq.(38) (at the final stepor its approximation, Eq.
ASS)=m/2; ASSV=m, N=En(p), j={ni=I}, (39) (at the first steps As an income, this procedure needs

the functionE,,(p), which can be provided by EqL7). This
where |, is the radial quantum number. The phase jumpequation is a regular quantum-mechanical stationary wave
AS,, arises because the point=0 in a cylinder or in a equation[18] for a perturbed oscillator and it routinely de-
sphere is of caustic typéhe particle is reflected at=0  termines the Rth eigenvalueE,,. The dependencE,, on
since formally its motion is restricted to the semiasts0);  the momentunp appears via the functiow,(»), which con-
their magnitudeASS) (for a cylindey and ASS!) (for a  tains the quantity as a parameter. Fortunately, for the most
spher¢ can be obtained within the standard semiclassicainteresting case of the ground levets<0), the phase factor

framework[18]. AS practically coincides with the phageSCFR (see the solid
and dashed lines marken=0 in Fig. 4, which can be
VI. RESULTS AND DISCUSSION evaluated from Eq(39) or Eg. (38), the functionE, being
_ L . determined by the explicit formula given in E@4).
Let us first formulate an explictecipefor rapid calcula- (v) If the resulting value oA S deviates significantly from

tioD of.th.e trapping factorg, ;= 1/\,; for the (n,i) mode e previous one, one returns to st@p) (typically, two or
Wi within the GQT. We stress that, due to the frequencyihree iterations are enough

redistribution, even in the simplest 1D geometries, a mode (vj) Once a converged value &fS is obtainedp; can be
can be specified by, at least, two numbgrs{n,i}. Namely,  determined for ther(,i) mode.

the indexn corresponds to the frequency dependence of the (vii) The trapping factorg; can then be evaluated accord-
modal function, whereas the indéxaccounts for its spatial jng to Eq. (37), asg;=1/E,(p;). As we mentioned above
dependence. For 2D and 3D geometries, the multi-index (Sec. V), the functionEq(p) is very close to the function

incorporates other space quantum numiaag. < .
The two types of indices correspond with the two stagesVD(p)’ Eq. (24), for the CFR casésee also Fig. 2, curves

in relaxation experienced by any initial distribution in the n=0). The expression
process of radiation trapping. First, the prompt relaxation of
a primary createfrequency distributiorto that of the ground Eo(p)=A(p)Vp(p), A(p)= 1+2.421n(1+0.0885p)
mode (with respect to the frequency variables=0) takes 1+2.42In(1+0.113p)
place. The corresponding rate constants can be evaluated as (41)
effective radiation decay constanks,; with even n=2k. ] o ]
The X, ! values @ factors for n+0 are close to the natural @PProximatesEq(p) within a 1% margin(see the curves
radiative lifetime and weakly depend on the opacity of theMarkedA in Fig. 2). This approximation allows one to cal-
vapor cell* Second, spatial relaxationof radiation in the —Cculate the trapping factorg,—o; (covering the fundamental
ground states=0 occurs. At this stage, the modal function Mede casei,=0) for 2D and 3D geometries, using the GQT
Vi oi=¢5 %(v)-Ni(F) carries the time-independent g‘e(tz‘))‘ﬁﬂ?‘i:griigtigﬁnlé](s;’ substitution of the energy
.. . n=0 D 0 )
erT1|SS|on prOffle‘Péi )(V.)’ wheregs th@n—o, factors deter- (viii) The obtainedp; value determines also the emission
mine the spatl_al rt_alaxatlon of excited atoms to the fundamenprof”e @f)n)(V) as the Xth eigenfunction of Eq(17) with
tal mode distributiorN; _o(F). , __ p=p;. Note that modes belonging to the same brafthe
To_evaluate)\n,i , one has to determine the qua5|part|clequamum numben is fixed have differentp; values for the
quantized momentum values=p; corresponding to the game onacityr and, therefore, their frequency dependences
are quite different.
Finally, we point out one more important interpretation of
See Eq/(23) by taking into account that ;= E,(p;)- the quantization rules. They establish the relationship be-
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1 3 FIG. 6. lllustration of the validity for the factorization assump-
001 0'1 : ; : 1'0 . 160 tion, Eq. (30). A layer with total lengthL and opacityr=3 is
Opacity considered. The frequency dependence?piovizo(zm ,v) are cal-
culated numerically with the metho@3] and are plottedsolid
FIG. 5. Fundamental mode trapping factegs, for a layer, an  curves for five pointsz,,=m(L/10),m=0, . .. ,4. Thedotted curve

infinite cylinder, and a sphere as a function of the opacitijor the ~ corresponds to the layer boundary; the dashed curve represents the
layer with total lengthL, the opacity is calculated agKgD)L; T Doppler profile expt1#/2). All curves are normalized to unit value
= «{P)R for a cylinder or a sphere with radiis The dots represent at the line center.
the results obtained by Monte Carlo simulatigas]. . o
A comparison between the frequency distributipg(v)

tween the reduced opacinK(()D)p—l and the ordinary va- obtaingd within the GQT approadsolid curve$ and _thg
por cell opacityr. For instance, in a layer, E¢35) reads numerical evaluatiofdashed curvesf the frequency distri-

’ bution of excited atoms at the center of the layerfo« 2 is

given in Fig. 1. We see that numerical and analytical results
are in good agreement. The assumption of mode factoriza-
tion [see Eq(30) in Sec. V], which is most essential for the
One can estimate the accuracy of the developed GQg¥emiclassical treatment, is confirmed by Fig. 6 and obtained
scheme with the data for the fundamental mode trappin@y using numerical methods developed 28,24 on the ba-
factor gy (note that consideration of the lowest mode, whichsis of the split-propagation techniq{24].
corresponds to the quasiparticle ground state, provides a We would like to discuss one more relevant feature of the
stringent test for the accuracy of semiclassical methddse  radiation trapping phenomenon with the DFR mechanism.
factorsg, obtained within the GQT are plotted in Fig. 5 for As mentioned above, the results of the CFR approach can be
1D geometries and are compared with results of numericabbtained within our study with the first-order perturbation
calculations(dots in Fig. 5, see also Tablg IOne can infer theory[see the discussion of Eq21) and(23)]. However, it
that the GQT provides values @f, within a 2-4% error is well known that, for large opacities, the main effects of
margin for the layer. For other higher modes with modalradiation trapping processes are determined by the wings of
index i>0, the GQT gives substantially more accurate re-the spectral line. From this point of view, the perturbation
sults. theory is not an adequate tool for the evaluation of trapping

mlr=ml,+AS" (7, 1,0=0). (42

TABLE I. Eigenvalues oo and\ ; of the first two modes for a layer with total length zand their
comparison with numerical results. The opacitys calculated asxch)L.

Fundamental mode1=0, i=0 First odd moden=0,i=1
Opacity GQT Num/[23] Num. [14] Opacity GQT Num|[23]

1.0 0.4792 0.4520 0.4690 1.0 0.7601 0.7628

2.0 0.3149 0.3090 0.316 2.0 0.5981 0.6009

3.0 0.2301 0.2283 0.228 3.0 0.4841 0.4872

5.0 0.1450 0.1449 0.147 5.0 0.3391 0.3424

10 0.07098 0.07076 0.0713 10 0.1799 0.1824
30 0.02047 0.02039 0.0204 30 0.05333 0.05412
50 0.01190 0.01105 0.0112 50 0.02948 0.02976
70 0.007773 0.007514 0.0077 70 0.01940 0.02018
100 0.005188 0.005001 0.0047 100 0.01322 0.01329
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0% frequencyy; of the primary spectral distribution. The atoms
0.018 | oo | have been excited at the center of the layer with an initial
density distributionn*(z,v,t=0)=(Lp)‘1®p(z) S(v—vj).
Here® ,(z) is Heaviside step function that has unit value for
|z <pL/2 and zero value fojz| > pL/2. We choose the layer
opacity 7=«{P)L=30 and set the excitation zone index
p=0.1. The total radiation intensity is connected to the total
amount of the excited atoms  N(t)
=2 dzf* . dvn*(z,v,t) by the relation J(t)
= —dN(t)/dt. The calculations were performed using Fou-
rier series[2,7] with the modes and trapping factors evalu-
ated by the GQT.

A specific growth of the intensity(t) at some stage of
FIG. 7. Temporal behavior of the total intensit) of escaping the decay process can be considered as a result of interplay

radiation for a layer. Initially the layer, with total length and ~ DEtWeen two processes. At the first stagel (we remind
opacity 7= 30, is excited in its central patz|<0.0%.. The initial  the reader that the time unit in our study is the radiative

frequenciesy; of the excitation are related to the opacities lifetime A,"), of the radiation escape, photons are emitted
=30 exfi — (v —1p)?], Which are marked close to each curve. Theonly from the center of the layer without absorption, and
dotted line corresponds to the initial frequency distribution with thethey have to fly along the optically thick path with opacity
Doppler profile. The inset displays an enlarged view corresponding, = 7 exf — (v, —15)?]. Simultaneously, due to the radiation
to the initial stage of the process. trapping, the spatial diffusion of the excited atoms proceeds
and, at a certain moment, a considerable part of the layer

factors. Indeed, Eq(17) does not allow one to describe its P&comes occupied by the excited atoms. Some fraction of the
solutionsg,(v) as a perturbed function in the frequency re- excited atoms is close to the layer borders and can emit pho-
gion of its exponential decreatg], i.e., in the line wings. {Ons outside the layer without capture. Thus, the increase of
For this reason, the high accuracy of the CFR approacfN® intensityJ(t) is related both to the expansion of the
seems to be accidental. If the dispersion branch indéx ~ ©xcitation zone and to the circumstance that the main contri-
positive, then the evaluation of both the dispersion functiondution to J(t) arises from secondary emitted photoisee
E.(p) and the phase jumpsS™ within the framework of &S0 [25]). The decrease of radiation intensity begins when
the perturbation approach is not quite accurate, as one c4R€ €xcitation zone reaches the cell boundary. _
conclude from Figs. 2 and 4. Another important feature in the decay curves shown in
Continuing our discussion of the CFR approach accuracy/19- 7 is their deformation with deviation of the initial fre-
we address the basic structure of the emission profile§uency detuning; from the line centew,. The decrease of
() in the small opacity case. Let us consider the modi-the optical thickness; for primary escaping photons leads to
figd profile"(”zoo)(v) determined by Eq(27). From the an increase of the initial intensity(t=0). On the other
variation principle, one can easily obtain that the best choicdand, since the relaxation constants-E,, are close to
among the Gaussian approximaticmglzoo)(v)~exp(—aV2) unity [see Eq.(23)], the relaxation of the initial frequency

o . S . distribution to the Doppler profile leads to a coincidence of
is given witha~1.46. Such a representation is quite accurat%he DFR curves with the CFR cur¢dashed ling For large

at the line center. The modified profile at the line Wingsd . 1) h h : itted oh
can be obtained by solving E7) in the classically forbid- etunmg(sma 7i), however, the primary emitted photons
q : . . . can excite the atoms far from the layer center. Consequently,
en region. Conventional semiclassical analys#j reveals the excitation zone reaches the layer walls faster, and the
a new factor in the emission profilee"Z2(v) . : ’ .
70 layer starts to emit photons in the fundamental mode regime
without any preliminary growth of the intensity.

0.015

)

0.012

0.009

0.008

~v texp1#)(v—x) as compared with the pure Doppler
profile exp(17); the additional factow ™! in the line wings
was first mentioned if16]. Thus, we have obtained a no-
ticeable narrowing of the emission line with simultaneous
deformation of its wings due to the Doppler mechanism of ) o )
the frequency redistribution. One can clearly reveal these 1he geometrical quantization technique developed above
trends in data presented in Fig. 1. can pe applied to a I_arge variety of physically interesting
As shown above, the space relaxation constants for thaituations. Actually, this approach' can be used to analyze the
CFR case and for the ground modesth n=0) in the PFR  entire class of phenomena for which thelependence of Fhe
case are quite similar to one another. On the other hand, tHféopagatoiG,,/(p) can be related to a second-order differ-
prompt relaxation of initial frequency distribution to the low-
est modg(in the DFR casgoccurs in the scale of the natural
radiative lifetime. This can lead to specific features in the St is noteworthy that various types of spectral lines have different
time dependence of intensity of the escaping radiafi()  relative probabilities for a photon to escape afteelementary ab-
under the conditions of after glow experiments. In Fig. 7, wesorption processes. In the Lorentz line case, for instance, no in-
give an example of the dependence J§f) on the center crease of light emission intensity occurs.

Further PFR problems
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ential operator or its Green function. We outline two ex-trapping factors in a MOT that was studied experimentally in

amples of radiation trapping problems that can be considergd]. We plan to consider this very important problem in a

with this method® separate publication.

The representatiof26,27

(AV(D))Z 9 9 VII. CONCLUSIONS

2 5"(” J Integro-differential equations describing the radiation en-
(43) ergy transfer belong to a special class of equations that cov-

ers a much richer and broader range of physical phenomena

is valid in the case of frequency diffusion in the spectral linethan the local diffusion equations of the Fokker-Planck type.

when the absorption/reemission processes are regarded as sthis paper, we have presented an analytical, rather accu-

sentially coherent due to the natural broadening, while théate (albeit approximats method treating the basic trapping

redistribution due to the Doppler effects is relatively small®guation as a generalized waiffusion) equation. Namely, -

[2]. In a vapor medium, this situation can occur in the inter-We have exploited the semiclassical geometrical quantization

mediate range of gas press{i#éwhen the escape factors are €Chnique(GQT) for such problems.

determined mainly by the natural Lorentz wings of the Voigt ~ Although our treatment has been applied mainly to the
profile. In plasma physics, the relatiohy®<Ap(Y) pe- ~ case of the pure Doppler redistribution function, the results

tween Doppler and natural widths is typical for highly ion- ©btained are expected to be quite general. The semiclassical
ized gase$27). study and independent numerical calculations reveal the

Another important object that can be studied directly withdualitative feature of the trapping equations with PFR,
the developed methods is radiation transfer in a system djamely the high accuracy of the mode factorization assump-
cold atoms in a magneto-optical traMOT). For typical  tion expressed by E¢30) and interpreted as an approximate
MOT conditions[6], the ratioA »®)/A »(1) is less than 0.05, separation of the spatial and frequency yarlab_les. This allows
and the diffusion approadiEq. (43)] reduces the computa- ©N€ to reduce the general task to consideration of two para-
tion of the emission profile,(¥) in modes to the study of a metrically coupled problems.

;RV,,!: S(v—v")| k(v')+

-1

stationary wave equation similar to EQ.7). Moreover, the () The first problem can be obtained after the spatial Fou-
GQT succeeds in solving the Streater equafi®], which ~ Ner tra_msform of the 4D trapping equation kermel|nf|n_|te
seems to be more adequd] for describing radiation ef- SPaceis performed. Essentlally, this problem deals Wl_th the
fects in cold atoms than the Payne equafi¢f{Eq. (1)]. The 1D speptral Eroblem in the frquency space._The qunal Fou-
Streater theory accounts for the fact of instantang@®ay-  'er variablep enters the wave like 1D equation obtained as
leigh) photon scattering by introducing the additional term @ parameter and only with its absolute magnityge|p|.
This spectral problem determines both the emission profiles
" 1 (,of)”)(v) and the dispersion law,(p) of modes as a func-
f d,/J d3r’ ;RW,_ —k(v)k(v") tion of p. The frequency quantum number(which must be
- Q K evern distinguishes different dispersion branch@sxcited
p levelg of that 1D equation.
X G, (|F=F")=n*(F', v 1) (44) (if) The second part deals with the spatial variables of the
ot trapping equation and relates the Fourier paramgter the
momentum of an associated quasiparticle moving in the
on the right-hand side of Ed1). space and confined in the vapor cell by the effective potential
In particular, for the Streater problef8], the dispersion walls. Remarkably, the dispersion lai&y,(p) for this quasi-
law Eq(p) of the quasiparticle in the fundamental branch canparticle is determined from the first part of the task described
be obtained: above. The total density of atoms at the paipiN;(F), sat-
isfies the conventional Holstein trapping equation with emis-
. 1 (= dx k(%) D sion profile¢{”(v). The relevant parametgrcan be deter-
Eo"(p)=— J 511 arctan — mined within the GQT[10,11 by using generalized
Tooelax P K(X) guantization rules. The effective radiation trapping constant
N ni=En(p;) corresponding to the mode,i) can be calcu-

L Kg'-) lated analytically. A comparison of the results obtained with
K (X)) = 5" (45) available numerical data indicates the high accuracy of the
1+x GOT

. . Therefore, we have obtained an answer for the long-
Thus, the GQT allows us to analytically evaluate the ent'restanding problem concerning the accuracy of the complete

spectrum of both the modes and the corresponding rad'at'of?equency redistribution approximation in the case of Dop-
pler spectral redistribution. The statement derived previously
from various numerical simulations of the discussed pro-
A wide range of corresponding problems can be found in plasm#&esses for the simplest experimental configurations of vapor
physics[3] in the theory of electron redistribution over the space cells, namely thaCFR gives the trapping factors for funda-
and energy variables via the linear transport Boltzmann equation.mental mode within a 12% accuracy levélas been con-
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firmed in our study. We have also explained a noticeablavhere

discrepancy between the actual emission profiles and the

Doppler one. It is shown that the behavior of the emission

profile in the wings of the spectral line is connected to the J N N

behavior of eigenfunctions for the perturbed oscillator prob- P,=7,Si(Mw), =V §(Fw); (A3)
lem in the classically forbidden region. From this result, it
follows that straightforward perturbation theory cannot be
applied to the determination of the wing effects. This ex-
plains the deviations between some numerical observations HUPX(p,,v;p)= Ep’2’+ §V2+ mVp(V),
[13] and theoretical predictiori29] pointed out in[13]. J @

The geometrical quantization technique turns out to be a
quite powerful technical tool for solving the radiation trap-
ping problems both for CFR theory and for more realistic
conditions of partial frequency redistribution. As the next
stage in our study of the radiation trapping, we plan to applyjn solving Eq.(A3) for S, , we apply the Jacobi meth¢o].
this method to radiation trapping phenomena in the cases iRamely, the functiorH“?) entering Eq.(A4) determines a
which the diffusion mechanisif26,27] of the line wing for-  Hamiltonian function over the phase spage,,;p,f} for
mation plays an important role. The corresponding experiyhe 4D classical system that we associate with a 4D quasi-
mental situations take place in different branches of phySiCSparticle. The HamiliatioH“?) gives rise to the quasiparticle

As an example, we mention the phenomena taking place iftajectories{»(t),f(t)} via the Hamiltonian motion equa-
plasmg 27,30 and the processes relevant in a system of colgjyng

atoms in magneto-optical trap6].

It should be also noted that the solutions of certain linear
trapping problems play an important role in the construction 4 oH
of fast analytical algorithms for investigation of the effects =
described by nonlinear radiation transfer equatif@8ts32.

p=|pl. (A4)

- 0 d_oH 1 N p
a0 o 1N W, ap

The GQT method developed provides a powerful universal (AS)
tool for obtaining analytical information required in those
studies[32].
d dH V()
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method presented ifi4]. The trajectorieg»(t),f(t)} play the role of rays along which
the corresponding wave fronts are propagafingccord-
APPENDIX: A STUDY OF THE GENERALIZED ingly, the phase factor§;(, ) are obtained as an action

4D WAVE EQUATION integral over these ray20]:
BY THE SEMICLASSICAL APPROACH

We start by reiterating the basic E45) for thejth eigen- fo
mode, Si(fv)= f [pdF+p,dv]. (A7)

LL=N+1+Wo T (7 0) =D (=iV,0) T (F,p).
(A1) From Egs.(A5), it is clear that the momentuip remains
Conventionally, a semiclassical approach implies the eigenconstant within the vapor celll (where W,=0). In other
function ansatz in the form of a product of rapidly and words, the quasiparticle moves fredlsee Fig. 3 inside ().
slowly varying functiong18,33: The region outsid&), where W, is assumed to be very
large, is forbidden for classical motidand the quasiparticle

T (F,v)~ AT, v)exd £1S(7,v)]. (A2)

The quantityS;(F,»), conventionally referred to as a short-

. . . For a detailed discussion of the relation between the quasiparticle
ened action, obeys the Hamilton-Jacobi equaf&8] ! ISeusst ! W quasipart

rays and the wave fronts, sg&l,21].
8As it follows from Eq.(A3), the positive Hamiltoniatd “®) de-

1+A—Wao fined by Eq.(A4) has to get the negative magnituded.5 if W,

(4D) CRY —
H™)(p,,v;P) 0'5—1—AJ+WQ’ o
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is reflected by the cell boundaryQ. These reflections fore, in the HamiltonianH“P), the spatial and frequency
change only the orientation of the momentyginEquation  parts are independent. This statement leads to the conclusion
(A6) determines the quasiparticle motion with respect to théhat the phases; is the sum of two independent paig
frequency. It is not influenced by the space motion, since the= S,(v) +S(f), which is equivalent to factorization, Eq.

p magnitude entering these equations does not vary. Theré30), of the eigenmoddf}c .
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