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1. Path integrals in quantum mechanics. Euclidean formulation of quantum
mechanics. Path integral for a harmonic oscillator. An analogy between the
Euclidean formulation of quantum mechanics in D dimensions and statistical

mechanics in D spatial and 1 temporal dimensions in equilibrium.

The concept of path integrals in quantum mechanics stems from the famous gedankenexper-
iment, that is the thought experiment, where electrons emitted by some source pass through
two slots and, after that, are detected on a screen [1]. The slots are located symmetrically
with respect to the line, which goes through the emitter perpendicularly to the screen. One
measures the probability P(z) for an electron to be detected on the screen at a distance
x from this line. Since electrons are particles, one could guess that an electron definitely
passes through one of the two slots, and therefore P(z) = P;(x) + Py(x). Here, Pi(x) is the
probability measured with the closed slot number 2, and P»(z) is the probability measured
with the closed slot number 1. Experimentally, however, when both slots are kept open,
one observes a picture corresponding to the intensity distribution, which appears from the
interference of two waves. For this reason, one can assume that the process is described
by some (complex-valued) probability amplitude ¢(z), and it is this amplitude which is an
additive quantity. That means the probability is expressed in terms of the amplitude as
P(a) = lp(@)]2, where ¢(z) = ¢1(z) + ¢a(2).

Using light, namely the Compton scattering of photons off the electrons, one can try to
detect which of the two slots a given electron passes through. As a result, one can know
for sure that the electron passes through the slot number 1 or through the slot number
2, and therefore the probability itself becomes additive, P(x) = Pi(z) + Py(z). That is,
however, only possible provided one can register a photon scattered off the electron. In
the course of scattering, such a photon with the wavelength A\ transfers to the electron a
momentum of the order of A/A. Thus, an ambiguity of this order of magnitude appears
in the measured momentum of the detected electron, that is the origin of the Heisenberg
uncertainty principle. Only with the increase of the physical influence (used to detect which
of the two slots the electron has passed through) up to the point where the interference
picture is lost completely, does one arrive at the additive probability.

In the thought experiment suggested by Richard Feynman, one increases the number of

slots, as well as of intermediate screens with the slots. Essentially, one can imagine the



whole space consisting of such infinitesimal slots at every point. This way, one arrives at an
idea of the integral over trajectories, or the path integral. The probability amplitude for a
particle located at the space point x, at the moment of time ¢, to be, at a later moment ¢,

detected at the space point x; is given by the formal sum
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This sum runs over all paths {x(¢)} connecting these two space points in such a way that
x(t,) = x, and x(t;) = x,. Here, S[x(t)] = tib dt L(x,%) is the action of the particle,
corresponding to the Lagrangian £. The method of path integration [1| aims at a calculation
of such sums for various physical systems.

We start with a calculation of the one-dimensional quantum-mechanical path integral for
a free particle. First, we use the so-called Method of mathematical induction to prove that
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Further, assuming the validity of Eq. (1), let us prove that
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we see that Eq. (2) is proven.

We now find an n-dependent constant A(n) in the integration measure

Dq(t) = lim A(n)dq - --dg,.
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Consider the Lagrangian of a free particle, £ = mqu. One has
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A normalization condition, which eliminates the n-dependence completely, can be imposed

we obtain
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by demanding lim,, .- - | to be equal to a constant. This constant is conventionally fixed

to 1, that yields the desired result

A(n):( m )T. (3)



The amplitude of transition during the time (¢” — t') can be represented as an infinite

product of amplitudes describing transitions over infinitesimal time intervals:
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where |q,t) = e |g). An amplitude over an infinitesimal time interval can be evaluated as

follows:
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For a Hamiltonian of the general form, H = % + V(q), we have
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Here, in the second step, we have used the equality (grp11|p’) = T and in the last step

we have denoted g, = w, and used the equality (qrs1|qx) = 6(qr1 — qr). Altogether,
we can write
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where H(p, gx) 2o V(qk), and Eq. (4) reads
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Promoting the e-term back to the exponential, we have
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Therefore, noting that ¢ = ¢/, ¢,+1 = ¢”, one has
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This expression can symbolically be written as
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This formula is a general expression for the case when H = (any function of p) + (any

function of ¢). In the continuum limit, ¢ is a function of ¢, and we are left with the integral
over functions, i.e. the functional integral. Note that p(t) is also a function, not an operator,
and {q(t), p(t)} are trajectories in the phase space. Furthermore, the Gaussian p-integrations

in the formula
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can be performed explicitly:
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In particular, in the free-particle case, V = 0, one has
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We reproduce now the Schrodinger equation in the limit ¢’ — ¢, where the particle
does not manage to move somewhat significantly away from ¢’. We introduce the following
notations: K(¢",t"|¢,t") = (¢",t"|¢, ), ' =t, ¢ =y, ¢" =z, " =t+e,y—x=¢. Then
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Expanding both sides of this integral equation for ¢ up to the terms linear in €, we have
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Thus, one arrives at the Schréodinger equation
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Indeed, when the dependence on the Planck constant A is restored, one has
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i.e. the Schrédinger equation in the conventional form.
We calculate now the path integral for the harmonic oscillator of mass m = 1:
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where (Dz),, denotes the measure of integration over paths z(¢) such that 2(0) =y, 2(T) =
x. Proceeding from the states with definite coordinate to the states with definite energy,

H|n) = E,|n), one gets the expression
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which involves the sum of oscillating exponents. If we are interested in the ground state, it
is convenient to transform the oscillating exponents to the decreasing ones. That is achieved
by the Wick rotation ¢ — —i7, which yields the Euclidean quantum mechanics. Then, in

the limit T — oo, only the term e=£oT4)y(x)1;(y) in the sum Y survives. One further has

, [T dz T 1 /dz\?
zS—z/O dt[2(d7’) -V —/0 dT[—§(%) _V]’

where it has been used that dt = —idr. We denote the Euclidean action Sp =
fOT dr [% (%)2 + V(z)] as just S. Then, the integral of interest, [Dze F(Ml is accumu-

lated in the regions near the minima of S. We denote by z(7) the path corresponding to



the minimal action Sy (also called the extremal path or the stationary point of the path
integral): So = S[z(7)]. Then [Dze ¥ ~e~%. (For S possessing several stationary points,
the right-hand side of this relation is replaced by Ze SE(L) As a next step, we fix the
pre-exponential factor. For simplicity, we consider the case where only one stationary point

of S exists. Decomposing z into z and a small fluctuation £ = dz as z = z + &, one has
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After the Wick rotation, the potential has changed the sign, and z = V’(2) is the classical

equation of motion in the potential —V'(z). The action expanded around Sy takes the form
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Suppose that we know a complete set of eigenfunctions and eigenvalues of the equation
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Then, by using the Hilbert-Schmidt orthogonalization procedure, these functions can be
made orthonormal, fOT AT 2y (T) 2 (T) = Opun. An arbitrary function &(7) can be represented

as £(7) = > ¢uzn(7), and we have
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mality of z,’s. Next, one may always replace Dz by H dc"

since the proportionality constant
between these two measures has some meaning only When the overall normalization of the

path integral is fixed. (That will be done below.) Then
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Note that, symbolically, by an analogy to the case of finite-dimensional matrices, one can

write
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We can now specify the potential of an oscillator:
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For the eigenvalues and eigenfunctions we have
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depend on w and therefore corresponds to the free motion of a particle.

o ~1/2
We introduce yet another normalization factor N' = N [H (M)Z} , which does not

Next, the so-called Fundamental theorem of algebra states that a polynomial of degree
n has exactly n (in general, complex-valued) roots, and can therefore be represented as
P.(x) = ag (1 — :c%) (1 — x%), where x1,...,x, are the roots of P,, and ag is its free

term. Consider a generalization of this theorem to the case n — oo, and take as an infinite-

degree polynomial the Taylor series of the function %
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where Sy can be found from the classical equation of motion, and reads

w

So = Senh(WT) [(#* + *) cosh(wT) — 2zy] .
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In the limit w — 0, the path integral for a free particle, Noraa

yielding N = \/#—T This completes the calculation. Finally, one finds
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The leading term of this expression reproduces the known quantum-mechanical results for the
eigenenergy and the wave-function of the ground state of the oscillator: Ey = £, [1)y(0)]* =
\/g . The next-to-leading term corresponds to the (n = 2)-state of the oscillator, while odd
n’s do not contribute, since for them 4, (0) = 0.

We will now discuss an analogy between the Euclidean formulation of quantum mechan-
ics in D dimensions and statistical mechanics in D spatial and 1 temporal dimensions in
equilibrium. To find such an analogy, we notice that the thermodynamic properties of an
equilibrium system in (D + 1) dimensions are determined by the thermal partition function

1

Z(B,V) = e PEn =tre P where =
(8 V) Zn: g temperature

and the trace is taken over the complete set of states {1, }, such that Hi,, = E,1,. For the
rest of this Section, we will not use temperature in the formulae, since it is denoted by the
same letter T" as the proper time in the path integral. To avoid possible confusions related
to that, we will rather use the inverse temperature (.

A statistical-mechanics counterpart of the propagator is the thermal density matrix
(xle ™ y) =D e PP ()t (y),

where from now on in this Section we denote D-dimensional vectors as x and the eigenstates
of the position operator as |x). Thus, an analogy between Euclidean quantum mechanics in
D dimensions and statistical mechanics in D spatial and one temporal dimensions, whose

time-dependence disappears in equilibrium, can be established as follows. The path-integral
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representation for the thermal density matrix is given by

/ Daz(t) e 5"

z(0)=y
z(B)=x

with Sp = fo dt [ (%) + V(z)], where V' denotes the potential (to distinguish it from the

volume V). From now on, unless the opposite is explicitly stated, ¢ denotes the Euclidean

time. The partition function is the spatial integral of the diagonal element of the thermal

density matrix:

Z(ﬁ,V):/de (x|le P |x) =V - / Dz(t) e ",

v 2(0)=x(5)

Recalling that, for a free particle of mass 1, fz(O):z(T) Dz(t)e 5 = we obtain

1
(27TT)D/2 )
D/2

for a particle of mass m: Z(3,V) =V <%> . One can see that this expression does
coincide with the one following from the Boltzmann distribution in classical statistics, where

E(p) = p_; is the energy of a free nonrelativistic particle, which reads

2
B dP’p _ w_ YV 2mm D/2_ m \ "
20 =V [ oo = 5o (7F) = (35)

Furthermore, as follows from the path integral, the thermal density matrix in the free case

_8H m \ "% meey?
e ly) = (55 ) T
m

Accordingly, an alternative derivation, which uses the Boltzmann statistics, is based on the

reads

formula

(xle™]y) = Ze P (%)t (y)-

Using for eigenfunctions of the free Hamiltonian plane waves normalized in the spatial volume

V,ie Y,(y) =¢ply) = ﬁe_"py, we do reproduce the above result:

_ dPp B m \"? _mey?
(x|e 5H|y>:/(2W)De pO—y)- 42 _ o e 3 .

In particular, the thermal density matrix for a harmonic oscillator reads

ke 1) = | a5 e (- [0 4y coshw) ~ 2x7] .
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In conclusion of this Section, we make the following final remark. Consider a one-
dimensional chain of point-like masses connected by springs. The potential energy of such

a chain reads

il m (Zi — Zi_1)2 —
Epot = Z 0} : ﬁ + V(Z,'_l) . (ti — ti—l) ,
i—1 7 i—

where we have assumed an additional interaction, with energy-density V', between the neigh-

bors. At temperature 1/, the partition function of this system has the form
N
Z = /l_IalzZ e BEpot _, /Dz(t) e PBlO at N — oo.
i=1

Therefore, one observes the following correspondence. Consider two states of a particle and
a quantum transition between these two states, which occurs during the Euclidean time 7.
Then, the amplitude of this transition is equal to the statistical sum of a one-dimensional
classical string of length T' |in general, in an external potential V(x)|, at the temperature

1 _
5_h'

2. A free-boson propagator at finite temperature. A path-integral derivation of the

partition function of an ideal Bose gas in quantum statistics.

To calculate the path integral

| pawetiaso, ©)

2 (0)=yp
z2p(T)=zy

it is useful to proceed to the integration over closed paths as follows: z, — &, = 2, +%="2t—

Y, Then £,(0) = ¢,(T") = 0, while the exponent takes the form

T T 2 T 2
ez = [ dt (¢ x”_yu) R it ) LT PR -
[ = a6 e |+ S L= ) (64D~ 6,00

(z—y)?

= Eq. (6)=c¢ 2 - f(T).

We have denoted

F(T) = / Dg, e 3 o #E0),
Eu (0):5u (1)=0
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that is possible since this path integral is a function of 7" only. It can most easily be calculated
by the comparison with the proper-time representation of the Euclidean propagator for a

free massless boson. Indeed, the propagator obeys the equation
—PG(x —y) =8P (z —y),

which, through the Fourier transform, leads to the following proper-time representation:

dPp ery—2) dPp . 1 [ P27
Glx—y) = = Zp(y—x)._/ dTe 55 —
0= G = [ g, e

1 [ (z—y)? 1
— = are S ——
2 /0 N DRI

Comparing it with the representation of the propagator in terms of the path integral,

1 [ _
Ga-v=g [ ar [ Dt
° z2u(0)=ypu
ZM(T):JUH
we conclude that
1

T)= ———.
A new element of this derivation was the introduction of the proper time T

Next, one can prove that, for a Hermitian operator D, the equality
Indet D = tr In D (7)

holds. That can be seen by reducing D to a diagonal form by a unitary transformation.
Denoting by D;’s (positive) eigenvalues of D, one has In[[ D; = 3 In D;, that proves the

desired equality. Then, the representation

1 1 & —1771,2 1T z'2
g =3 | et [ Daeiiese
i

can be used to calculate Indet(—0% +m?). Indeed, formally integrating the equation

1 1 o TD
r|=ly) = = dT(zle” 2
sl =5 [ drae )

over D, we obtain (up to an inessential constant of integration):

< dT

(@l Dly) = = [ Gt ¥ ) ©
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Using Egs. (7) and (8), one obtains

Indet(—0? + m?) = tr In(—0* + m?) = —/ ?(x|e_§(_82+m2)|:5) =
0

= —/ d—Te_% T / Dzu(t)e_%fgdtzﬁ(t).
0

T
2u(0)=2(T)
We consider now the following representation of the Green function of the Laplacian in

D Euclidean dimensions:
(=0l = [ dsp(s.) (9)

where R, = z, —y,, R = |z — y|, and % = s is the Schwinger proper time (while the
symbol T below in this Section will be reserved for temperature). In this representation, the
principal quantity is the probability for a random walker to evolve, during the proper time
s of the random walk, to the distance R from the starting point. This probability reads

R?

e 4s

P(s,R) = W

One can readily see that P(s, R) respects the conservation law
/dDR P(s,R) =1 (10)

and the initial condition

lim P(s, R) = SPN(R). (11)

In particular, performing the s-integration in Eq. (9), one obtains the D-dimensional

Coulomb (or Newton) law:

r&-1
(z|(=07%)|y) = %-
For D = 3 and D = 4, this law takes the conventional forms, (x|(—072)|y) = 5 and
D=3
9 1
(al(=072)ly)| (12)

D=t 4R
With these preliminaries, we proceed to the theory of a free massive scalar field at tem-
perature 7', in the spatial volume V. The logarithm of the partition function of this theory

reads

InZ(T,V)=1In / Dyp(x,t) exp{—/oﬁdt/vdD:E B(@W)”m;cpz}} —

o(x,0)=p(x,0)
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=In { [det(—07 +m?)] _1/2} = —% Indet(—8, + m?) = —%tr In(—8% +m?) =
— _%ﬂV/ %m In(—07 + w?), (13)
where w? = p% 4+ m?. At finite temperature T = %, the coordinate x, = t becomes periodic
with the period 5. This means the theory is compactified onto a circle of circumference f3.
We now make a digression, and consider a quantum-mechanical problem on a particle
moving along a circle of the radius R. (In our case, R = %) In this digression, ¢ denotes
the physical, rather than Fuclidean, time. The corresponding Lagrangian reads

mR2¢? . do
= ,  where = —.
2 dt

L

The Schrodinger equation, with A = 1, and the periodic boundary conditions yield the

spectrum and the corresponding eigenfunctions:

1 d>y

e — B p
¢l(0> = wl(27r) = E= W’ Yy~ ell‘i’7 le?Z.
Yi(0) = h(2m)

The normalization condition for a particle on a line is fjozo dxy*(z)(x) = 1. In the case of
a circle, it becomes R f027r Aoy (¢)i(¢) = 1, and yields the normalized eigenfunctions

Qild
Noraoh

By using these functions and the general formula for the propagation kernel,

wl(@ =

K(q"#'lq#) = 3 vi(q" V(g e =),

one can write the kernel in the form

1 = e
K(¢//7 t//‘(ﬁ/,t/) _ T Z e—zld)—ztﬁ57 (14>
l=—o0

where ¢ = ¢ — ¢, t =t —t'. Consider the (¢ — 0)-limit of this expression. It can be taken
+oo . +o
with the use of the Poisson sum formula, > e #® =27 > §(¢ — 27n). One obtains the

l=—00 n=—oo

formula

1 <=
K¢ )6 ) — = > 6(¢ — 2mn),

n=—oo
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which means that the particle can get from the point ¢’ to the point ¢”, passing the circle
an arbitrary number of times. The number n is called the winding number. Furthermore,
for an arbitrary ¢, we can transform Eq. (14) by using the following generalization of the

Poisson sum formula (which can be called a discrete version of the Gaussian integral):

00 T 00
A4 (B2
g e APHIBL — [T g e~ ma(B=2m)°  where A, B e C.
A
l=—c0 n=-—o0o
In our case, A = 7=, B = —¢, and we have

+00 )
K@ W) = [ 3 e H0mm (15)
™

Our digression on a particle moving along a circle is finished at this point.

In order to return to the path integral for a particle at finite temperature 7', we perform
the Wick rotation ¢t — s, and fix the mass m = % In this way, we arrive at the Schrodinger
equation _&y EY, where Ry = R¢. Recalling also that 2rR = [, we obtain from

dR?
Eq. (15):
1 X

K(Ry,s) = = > o 2 (Ratn)?

n=—oo

Denoting z, — y, = R, = (R, R4), we have for the propagator at finite temperature 7" in
(D = 4) dimensions:

=02y = 3 /Ooo dsPy(s, R,).

n=—oo

Here, the probabilities
1
Pn(S, R“) = W exXp | —

obey the conservation law [d*R P,(s,R,) = 1 and the initial condition lin% P.(s,R,) =

R2 + (R4 — /671)2
4s

§@)(R)S6(Ry — fn), which can be compared with their zero-temperature counterparts,

Egs. (10) and (11). Further, denoting & = %, we obtain

S

(@|(=07%)ly) =

ol R R2+ (R —fn)? ] 1 <X 1
‘<47r>2nzz_oo/o e [‘ i '4‘4?”:_00}{%(34—&)2'

Comparing this expression with Eq. (12), we notice that the presence of finite temperature

effectively leads to the substitution Ri — R? + (R, — n)?, and the subsequent summation

over n.
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+o00
Consider now the sum e i~k where wy = 2rTk are the so-called Matsubara
k=—o00
frequencies. Applying again the formula

“+oo
Z —Ak?+iBk _ / e—ﬁ(B—27rn)2
Y

k=—o00 n=-—00

where A = (27T)?s, B = —2rT Ry, we obtain

+o0o
Z o Swi—iwrRa _ 2T\/7 Z Xpl (Ry — (n) } 3 Z P,(s,Ry),

k=—o0 n=—oo

where

Pu(s, Ry) = 2\}%exp [—W] |

Therefore,

—+00 “+00
S Pu(s,Ry) =T Y e it (16)

n=-—00 k=—00

We can now finish the calculation of the partition function of a free massive scalar field
at finite temperature. Differentiating the trace in Eq. (13) with respect to w?, we have
9 try (=0} +w?) =tr; —5——- =T Z / dses@i+e?), (17)
ow? ¢ (—0?

k=—o00
Due to the trace, in the last equality we have used Eq. (16) with Ry = 0. Therefore, upon

the s-integration,
+00

0 1
——tr, In(—=0? +wH) =T —_——.
dw? ! (=0 ) kZ (27 Tk)? 4+ w?
=—00
To calculate this sum, we rewrite it as an integral in the complex z-plane over the contour
C which encircles the imaginary axis counterclockwise. In the vicinity of the pole z; = iwy,

one can approximate

T 1 th(z)
~ —co —
z—zr 2 2T )’

and use the Cauchy theorem to write

0 T dz 1 1
Ow? re In(=0; + ) 2wt | z— 2z, 2% — w2 Ami 20
C C

) 1
2T —w?’

One can now continuously deform the contour in such a way that the deformed contour

encircles (clockwise) only the isolated poles z = +w. Their contribution has the form

0
Wtrt ln(—af +UJ2) =
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47 22 — w2 22 — w2 2w

= b [(—2m’) . ReszzwM — 2mi - Reszz_w%] = 1 coth <i> )

Integrating this equation and accounting for the prefactor of 5 from Eq. (13), one has

w? 1 W' w W'
X _ 92 2 — - - — / et _
B - try In(—0; + w?) /6/ dw 5 coth <2T) ﬁ/ dw'’ coth <2T>

= 2In sinh (%) + (w — independent constant) =
= % +2In (1 —e /") + (w — independent constant).

Thus, one arrives at the following expression:

mZGWOz—V/kiﬁﬂ%anO—€WW]

It reproduces the standard result for an ideal Bose gas in quantum statistics, and addition-

ally contains the term g%, which is associated with the zero-point energy of the vacuum

(recognizable by the ground-state energy of an oscillator, equal to ).

3. Instantons in quantum mechanics. An analogy with 1D Ising model. Basics of

Yang-Mills instantons.
Preliminaries from quantum mechanics.

Let us start with recollecting some elements of quasiclassics. One seeks a solution to the

Schrédinger equation

— E— =
M+ (B = U)y = 0

io/h

in the form 1 = €/ where o(x) is an unknown function. For 9%¢ one has

2 :i io/h :i 2 ? 2| Lio/h
oY hﬁk [(8ka)e } 7 [8 o+ h(ﬁka) } e’/

that upon the insertion into the Schrédinger equation yields

1

(Do) %320 —E-U

From now on, we consider a 1D motion, in which case this equation takes the form
1 ih

2 "
—0”? - —0o"=E-U.
2m0 QmU
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One seeks now a solution to this equation in the form of a series in powers of the Planck

constant: o = oy + ?01 + +--. To the order h°, one gets

1
%UézzE—U = aozi—/dx Qm[E—U(:)s)]:i—/dxp,

where p = /2m[E — U(z)] is the classical momentum of a particle. To the order A', one

has

]‘ 2h’// Zh 7 ! ! U(,)/ 0-6, p/

— - —0gyoy——0y=0 = ool +—=0 >0 =——=—— =0, =—In =
om i C071 T 9,70 01T LT T T Ty T VP

h

where ¢ o are the constants of integration.

’QD = €Xp (10'() + 0'1) = ie%fdxp + &e_%fdl‘p’
VP VP

Let us choose two coordinates b and a, such that b < a. Suppose that U(b) = E and
U(a) = E, and furthermore that U(x) > F for x < b and & > a, while U(z) < E for

b < x < a. This means b and a are the turning points of the classical motion of a particle.

1/4

When one crosses these points, /p o« |U — E['/* goes over to (U — Ele*™) Here,

the sign of the phase acquired depends on whether a turning point is encircled clockwise or

<

counterclockwise in the complex z-plane [2]|. As a result, for x = b+0 one has ¢, = 75 Cos 0,

c/
VP
Suppose that a + 3 = 7n, where n is an integer. Since cos # = (—1)" cos a, one has ¥y = 1),

where 3 = + [," da’p— %, while for £ = a—0 one has ¢y = <= cosa, where a = ¢ [ da'p—Z.
by choosing ¢ = (—1)"c. The condition a+ (5 = mn reads %fba drp—7% = mn. Classically, the
particle would have been performing a periodic motion with the period (= time of motion
from b to a and back) T' = 2 fba de =2m ba %x. Therefore, denoting the integration over the
period by ¢, one obtains ¢ dzp = 2 [, dup = 2h(5 + 7n), or

L Ly L
onn ) PTG

that is the Bohr-Sommerfeld quantization condition.
Since, at x < b and = > a, ¥ falls off exponentially, for its normalization it suffices to
integrate |¢|> over x € [b,a]. Furthermore, since % fbm dz'p — 7§ is varying rapidly, it also

suffices to approximate

1 /[ T 1 [ T 1
2 = [ 2 = oo _
oS (h/b dx'p 4) _<cos (h/b dx'p 4)> 5

Then the normalization condition reads

a 2 ad
[ st =5 [
b
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Introducing the classical frequency w = 27 /T, one obtains

e "

Level splitting in two symmetric potential wells.

Consider U(x) formed by two symmetric potential wells (I and II) separated by a barrier.
Had the barrier been unpenetrable for the particle, the energy levels Ej equal for both wells
would be existing. These levels would correspond to the motion of the particle in one of the
two wells. Let ¢y(x) denote the respective semi-classical wave function in well I, normalized
by the condition fooo dx? = 1. A possibility of the underbarrier penetration leads to the
splitting of Ej in two levels, F, and F5. These new levels correspond to the states in which
the particle moves in the two wells simultaneously. In the zeroth approximation, the wave
functions corresponding to the levels E; and FE, are respectively the symmetric and the

antisymmetric combinations of ¢y(z) and ¢y (—zx):

1 1
— ﬁ[@bo(z) +o(—)], o(x) = V2

Consider the Schrédinger equations

() [Yo(2) = Yo(=2)].

o+ = (Eo—U)pg =0 and o] + —(Ey — U)yy = 0.

Subtracting from the first equation multiplied by v; the second equation multiplied by g,

one has
" " 2m
Vrhy — Yotpy + T (Eo — Ex)voy = 0. (19)

Integration in the range from zero to infinity yields

/ da(n ! — doul) = i

—/)m%%—%% +/‘w%w:
0 0 0 0 0

= —1(0)46(0) + ¢0(0)11 (0) = —v/240(0)155(0), (20)
where at the last step it has been taken into account that ;(0) = v/2¢(0), ¥} (0) = 0.
In the region I, 1o(—x) is exponentially small compared to ¢y(x), while in the region II

it is the other way around. For this reason, the product ¢y(z)1y(—x) is exponentially small

everywhere. Therefore,
1

0 NL 5% -
/0 dﬂ?%%—\/i/() dif%—\/ﬁ- (21)
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Inserting Eqs. (20) and (21) into the (integrated) Eq. (19), one gets

\/i;m(El Eo) = =2 (0)4(0) = Ey— Ey = —%2%(0)%(0)- (22)

Analogously to Eq. (19), one obtains an equation involving v, instead of ;:
R 2}1—?(]50 — Es)thorpe = 0.
Integrating, one has
| dotwni = vov) = =005 (0) + 50 (0)450) = V2 (0)¢40),

where at the last stage it has been used that 15(0) = 0, ¥4(0) = v/2¢4(0). In the same way
as in Eq. (21), fooo dxipgihy ~ %, that yields

\/sf(Ez — Eo) = V2o (0)y)(0) = Er—Ey= %2%(0)%(0)- (23)

Subtracting Eq. (22) from Eq. (23), one obtains
2h?

AE = By = Ey = — 4o (0)¢5(0). (24)
Next, under the barrier, i.e. at |z| < a,
c [/, [ w [,
Yo(z) = 2 /Tl exXp (‘ﬁ/m dx |P|) = %GXP (‘ﬁ/x dx |p|) )

where Eq. (18) has been used. Therefore,

where vy = %(UO — Ey). Accordingly,

Uh(o) = @) = ¥4(0) = " 4n(0),

and one obtains for the level splitting, Eq. (24):

202 mu, w 2 [ hw L[
AE = ol _o%( 0) = 2k, - 5oy exp (_ﬁ/o dx\p|) = 7GXP <—7—i/_adfc|17‘) . (25)

We specify now the double-well potential as

vir=3 (=) (26
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and use the units where 7 = 1. The Euclidean action of a particle reads

Sla] = / dr Bg;~2(7)+V(a;(T)) . (27)

The dimensionality of the proper time is [7] = m™2. As S[x] is dimensionless, the dimension-
ality of 22 is the same as that of 7, and therefore [#] = m~!. Furthermore, since [Az*] = m?,
the dimensionality of A is [\] = m®, and since [u?] = [Az?], the dimensionality of u is

(1] = m?. The minima of the potential are defined by the equation

M
7

Vi=0 = A\ —pPr=0 = 25 =+

We consider the limit

A< (28)

where the vacua at the points z7 are degenerate (i.e. the particle has the same energy Fj,
in both wells) to all orders of perturbation theory. By perturbation theory we mean here
an expansion near one of the minima, z(r) = £J5 + x(7), where |x| < J;. Thus, the
correlation function of two position operators goes to a constant at large proper times:
2
(2(0)z (7)) — “7 at T — oo.

The fact that this limit is nonvanishing means that the particle is localized in one of the two
vacua. The next terms of the perturbative expansion in A do not change this result, since
the potential V[z]| near the minima reads

24 D\
_ M2 AH _ A 3 2.2
Viz] = 1 <x i\/XX) X + VAP + 12, (29)

and 2 > 0, so that the perturbation theory is a normal one, for each of the vacua at x(jf.

However, nonperturbatively, (x(0)z(7)) = 3~ |x,0|?e~F»~F0)7 "and thus

(2(0)z(1)) ~ e 2P at 7 — oo,

where AE = Fy— FE is the energy splitting between the two lowest (symmetric and antisym-
metric) states. Therefore, the reflection symmetry, x < —x, which is broken in perturbation
theory, is restored nonperturbatively at 7 — oc.
We derive now AFE explicitly. At A — 0, Eq. (29) yields the potential of the harmonic
w H

oscillator with the frequency w = pu+/2. Thus, its ground-state energy is £, = 5= 7
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Equation (25) with m =1 [cf. Eq. (27)] reads

AE = “T\/ﬁ exp (- /a dx\/M) . (30)

—a

One can introduce instead of z(7) the dimensionless position operator z(7) = %1’(’7‘), in
terms of which V' = %(22 — 1). Introducing furthermore the variable h = ﬁ, one has

V—Ey= 1o [“3\/5@2 12— 1] (2 = 1) - 4n?] .

_ H
V2 | 4N 42 2

The factor emerging from dz\/2(V — Ey) in Eq. (30) is
Vo.M, Ve 1 dz

VA ko 25 2p

where we have used the relation ;%2 = % The points 2jer, and zyign;, where the particle

goes under the barrier, are determined by the equation V = Ej, that is (22 — 1) = 4h2. In
the limit (28) under study, h < 1, and this equation yields zje, > —1+ h and 2yigne >~ 1 — h.
Thus, the integral in Eq. (30) reads

1-h 1-h
1

@ 1 2h?
_ - — 2\2 _AB2 ~ _ 2 _
/_ dz/2(V — Ep) e dz/(1 — 22)2 — 4h2 ~ o dz <1 . 22) :

a

—1+h —1+h
where at the last step we have used the smallness of h to expand the square root. Elementary
integrations over z in this formula yield

“ 2

Accordingly, Eq. (30) to the same accuracy yields the following final result for the splitting

of the energy levels:

w2 2 V2 e 29208 2v24°
AE ~ = exp( T lnh) =e w = v eXP ) . (31)

This result is non-analytic in A\. Thus, it cannot be obtained in perturbation theory, i.e. it

is non-perturbative.

Instantons in the double-well potential.

Minima of the action (27) can be obtained from the classical equation of motion

—i+ V' = —i— pPr+ M® =0, (32)
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which is obviously obeyed by 2F = 41/ V/A. Besides these trivial minima, also the nontrivial

ones, called instantons, exist:

Tinst (T) = B tanh plr — o)

VA V2

where 7y is the position (or the center) of the instanton. An instanton interpolates between

(33)

the two minima of V[z] when 7 varies from —oo to +o0, i.e. it connects the minima by
an underbarrier motion during an infinite period of time. A solution, which interpolates

between p1/v/A at 7 = —oo and —u/v/\ at T = 400 is called anti-instanton:

Ta(7) = — " tanh (T —70)

AT

Using the fact that (tanht)’ = 1/cosh*t, one can readily check that @i, (7) is indeed a
solution to the equation of motion, Eq. (32).

Setting 79 = 0, we find the action of an (anti-)instanton. We have

2 2 1
: [tanh (ur/V'?2) — 1] = o G /vVa)

itinst = /~L2 : ! 7V[xinst] = é : ,u_4
V22X cosh?(ut/v/2) 4 N2

Substituting these expressions into Eq. (27), one has

s /+oo J {1 M4 1 N ,u4 1 } M4 /+oo dr
inst — B e R ————— -~ 1, ~| = Ay 4, ="
. 2 2\ cosh*(ur/v2) 4\ cosh*(ur/V/2) 2\ J_« cosh*(ut/v/2)

Introducing a dimensionless integration variable ¢ = u7//2, and noticing that

/%OL _4
_oo cosh*¢ 3

one obtains |cf. the exponent in Eq. (31)]

13

by

)
co%
)

Sinst = (34>

that is again non-analytic in A.

The fact that e™%»st is exponentially small for A < ;2 leads to a naive expectation that
the (x < —x)-symmetry cannot be restored by tunneling. However, it turns out that the
full contribution of all the trajectories with various values of 7 is sufficient for the symmetry

restoration. An arbitrary trajectory can be represented as a sum

2(7T) = Tinst (7) + Z Cnn(T),
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where x,,’s describe small fluctuations around z;,s. The equation for z,’s has been derived

in Section 1:

d2
<_ﬁ + V”[xinst]) Ty = Endnp. (35)

From the explicit form of the potential, Eq. (26), one has V" = 3\z? — u?, and Eq. (35)

takes the form
d’z,,
dr?

Due to the translation invariance, reflected in the fact that i, (7 — 79) with an arbitrary

+ (0 = BAhhgy) Tn = —Eny.

To 18 a solution to the classical equation of motion, there exists the so-called zero mode z

corresponding to g9 = 0. Accordingly, [ Dz(7) is equivalent to [dr - [] [ dc,, where [ dr
n

was not formerly present. To find the Jacobian corresponding to the change of variables

x(7) — 70, {c,}, one considers the square of the norm in the functional space:

[ aroo)? = 6y [ drtin)? + >

— 1//df(:'cinst)?/dro~1;[/dcn.

The action S can be expanded around the action Sy of a classical solution as S = Sy +

that yields

1 Z enc?. This expansion can be used in order to calculate the correlation function

fD[L’(T)[L’(Tl)[L’(Tg)e_S.

(a(m)e(r) =+ (5 S

The action Sy of the classical solutions x = :I:% vanishes, whereas for the classical solution

T = Ting 1t is given by Eq. (34). Therefore,

(x(1)z(72)) =

2 Ze(o) 2 3 —3 > ency,
“T . f Hdcne n %#T de xmst Hdcne a deOxinst(Tl)xinst(TQ)
n n

6(0) u 1S ene?
f H dcn z”: + e_¥73 f dT(j:inst)2 H dcne ’ zn: f dTO

)

where 5510) and g, are the spectra of fluctuations respectively around the trivial and the

. . . _2vEA .
instanton solutions. We now use the exponential smallness of e” 5 * in the denominator,

and expand it as A%rg ~ L(1 - %), where |£| < |A|. Furthermore, we write explicitly

2 _ _
/dTOxinst(’Tl)[L’inst(’TQ) = %/dm tanh :U(Tl\/g T0) tanh ,U(Tg\/§ 7‘0)‘
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This yields

1S enc?
Hdcn 2w
3 —
x |1+ e_Q_gE”T /dT Tinst)? o /dTo tanh A ) tanh 2 — )
[Tdeye” 5 v2 v2
Zancn
s Hdcne -
X |1l—e 3 X xmst (0)02 /dTO =
fHd che 3% D
% < C e ?_[MT‘Tl —T2|) (36)
where
C p—

Sy enc

n +OO . _
=— /dT(Si’inst)2 ©0) 2 / _dn_ [tanh u(n — 7o) tanh pr2 — 7o) —1
[T dene 22en e 71 — 72 V2 V2

This expression for C' can be simplified further, by introducing the following variables:

i 1;[ de,e

r=1y/|T1 — 7|, ti = pmi/V2, and ty = uty/\/2. The Tp-integral entering C' then reads
+oo
/ dx [tanh(t1 —I‘tl —t2|)tanh(t2—x\t1 —t2|> — 1]

Furthermore, upon one more change of variables, t; —ty = t, t; +t3 = T, this integral takes

e T+t T—t
/ dx [tanh <T+ - :)3|t|> tanh <T - x|t|) — 1] .

Consider now time intervals |7, —7; | large compared to the instanton size, v/2/pu [cf. Eq. (33)].

the form

In terms of the variable ¢, this is the limit |¢| > 1. If x| 2 1/2, then
T+t T—t
tanh <T+ - :)3|t|> tanh <T - x|t|) ~ tanh®(z|t|) ~ 1,

and the integrand vanishes. If |z| < 1/2, then x|t| in the arguments of the two tanh’s can

be disregarded, and tanh % tanh% — —1. Therefore, at [t| > 1,

+o00 T T 1/2
/ dx [tanh <—+t - x\t|) tanh (—t - x\t|) - 1} ~ / dx(—2) = -2,
e 2 2 p
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and the constant C reads

3 Z&nci

[Tl dese >

-1 ana(o)

€ =2 [ dr(in)?
i H dege

Thus C' > 0. Furthermore, by an explicit calculation [3], one can get for C' the following

remarkable result:

2vapEd _
C=AF-es5 x, ie. C(C-e

Ut

5 = AE, (37)

[\V)
0
w

where AFE is given by Eq. (31).

Besides the one-instanton contribution to the correlation function (x(7)x(72)), one should
also consider contributions of the multi-instanton configurations, corresponding to multiple
underbarrier penetrations of the particle from one vacuum to the other and back. According
to Eq. (36), an average separation in Euclidean time between the objects constituting this

1o 5 ﬁ. That, according to Eq. (31), is exponentially larger than

configuration is C~
the size of an instanton, v/2/u. For this reason, interactions between (anti-)instantons can

be disregarded, and one arrives at the instanton-gas configuration

N

(V) 1z . (_(i)>

x T——llSlIlT "),
7) VAT & 0

whose action is equal to the sum of actions of individual instantons: S®™) = N - 2‘[“ . One

can choose for concreteness the following sequence of the centers of instantons: Té ) > 7'(52)

>

>
. Summing over many-instanton configurations in the dilute-gas approximation,

one obtains an exponentiation of the one-instanton contribution to the correlation function

(x(11)x(72)). Equations (36) and (37) yield

M2 00 N-1 M2
<[L’( = 7 z:o AE / d’Tl/ d7'2 / dTN = TG_TAE,

where at the last step we have used an apparent fact that [ dry [[" drp--- [[¥ 7 d7y = TVN,
The exponentiation of single-instanton contributions is analogous to the exponentiation of a
single-particle contribution to the partition function in the case of an ideal gas in statistical
mechanics.

The (x < —z)-symmetry is now restored at 7 — oo. This restoration is produced by

instantons. The system develops a large but finite correlation length, 1/AFE, and becomes
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similar to 1D Ising model at finite temperature. Narrow instantons (represented by sign-
functions) form configurations whose counting is equivalent to the combinatorics of spin
orientations in the chain. Thus, the quantum-mechanical model for one particle in a double-

well potential resembles the spin chain, that is a macroscopic object.

A reminder on 1D Ising model.

The partition function of 1D Ising model reads

Z2=Y el = NN T e, (38)

{0} o1==+1 on=x1 1

where § = 1/T is the inverse temperature, E[o;] = —J > 0,041, K = (J, and one usually
uses the units where J = 1. The model is Z2—symmetrlic, i.e. it is symmetric under the
replacement of all o;’s by —o;’s. One can introduce the so-called transfer-matrix T with
the elements T,, = eﬁ‘"", so that Ty; = Ty = €P and Ty = Ty, = e ?. The characteristic
equation det(T Y ) = 0 yields the eigenvalues of T: A\ = 2cosh (B, Ay = 2sinh 3. Further-
more, one usually imposes the periodic boundary conditions, where the (N + 1)-st node of

the chain coincides with the 1-st node. Then the product in Eq. (38) can be written as
H eKoiTit1 — TiosTses =+ Tornorn s
and the partition function takes the form
Z =trTV = (2cosh B)N + (2sinh §)V.
In the thermodynamic limit, one gets
Z = (2cosh )" [1 + (tanh B)V] — (2cosh B)V, at N — oc. (39)

In the ground state, all the spins are aligned. An arbitrary state, where some of them are
flipped, can be characterized by the number n of links joining differently oriented spins.
Since the full number of links is N, the corresponding statistical weight of such a state is
e~20n . N The factor of 2 in €27 is because, for a given link, there exist two states, in
which two spins at the end-points of this link have different orientations. Since the number

of states with a given n is equal to the number of combinations C'};, the partition function
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can be represented as
N
Z =N Z Cre 2,
n=0

One can recognize in this representation the Taylor expansion of Eq. (39), since (2 cosh 3)V =
(e + e )N = N(1 + e 29)N. Such a representation makes it straightforward to calculate

the average number of flipped spins,

N N
_ _ (N-1)! —2B(n—1)
> nCre ™ Ne 20 37 (n NC I—(n—1))!
= n=0 _ n=1
% Cne—26n - Nlem2hm.
s N — n!(N—n)!
where the definition C} = '(va\fi'n has been used. Changing the n-summation in the nu-
merator by the k-summation, where £k = n — 1, one has
72ﬁk
Z k'(N 5
= Ne 2. — Ne 2 at N> 1.
Nle—26n
= n!(N—n)!
Accordingly, the correlation length
N
Te=—= 626
n

gets exponentially large at small temperatures, where the spontaneous magnetization and
the long-range order become significant.

To calculate the spontaneous magnetization explicitly, one considers interactions of
spins with the magnetlc field H. The energy of the chain in the magnetic field is

Elo;] = — Z: 00141 — H 231 0;. The partition function is again given by the formula

Z = Z Z TO’10’2 o O'No'la

o1=%1 on==%1

where the elements of the transfer-matrix now are

o; + 0;
Tai0i+1 = exp |:/6 <0i0i+1 + HTH)} .

Explicitly, they read T}, = ?(U+H) Ty, = f0-H) T\, = Ty = e ?. The characteristic
equation det(7 — AI) = 0 has the form

A2 —2Xe” cosh(BH) + 2sinh(23) = 0.
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Its roots Ao = e’ cosh(BH) & \/625 cosh?(BH) — 2sinh(2/3) can be written as

Az = e cosh(BH) + \/ €20 sinh?(BH) + e=20.
Similarly to the (H = 0)-case, the partition function reads

Z=tTV = AV AV =AY [1 + (>\2/)\1)N] =

N
. — [eﬁ cosh(6H) + \/625 sinh®(BH) + e—%]

in the thermodynamic limit N — oo. Thus, the partition function in this limit has no
singularities, and no phase transitions occur. The spontaneous magnetization is defined by

the formula

1 OF
I NI’ where F ThhZ TN In le cosh(BH) + \/e sinh”*(BH) + e

is the free energy. A straightforward differentiation yields
sinh(BH)

I = .
\/sinhz(ﬂH) +e40

Thus, at T = 0, all the spins are aligned, and I = 1. Rather, with the increase of T', I gets
smaller than 1, that resembles the restoration of the (z «» —x)-symmetry by instantons in

the double-well quantum-mechanical problem.

Basics of Yang-Mills instantons.

Consider a Euclidean Yang-Mills theory with the gauge group SU(2). The covariant deriva-

tive and the field-strength tensor in the fundamental representation read
V,0=0,0+[A,, 0], F,3=0,A3—03Aq+ AxApg — AgA,,

where A, = AT T = %, and ¢%’s are the Pauli matrices. To get used to these notations,

let us start with proving the Bianchi identity VMF’ uw = 0, where F w = %%mgFag is the dual

field-strength tensor. Due to the antisymmetry of the e-tensor, one has

1
§€MyagFag = ija@(aaAg + AaAﬁ). (40)
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Therefore,
VMFNV = €wap 10u(00Ap + AaAp) + Ap(0uAp + AxAp) — (00 A + AnAp)A,} =
= €wap 10,04 + 0, An - Ag + A0, Ag + A0n A + AyAGAg — 00 A - Ay — ALABA,LY =
= €wap {10400 As + (0,A0 - Ag — OuAp - Ay)+
+(An0,Ap + A0aAg) + (A AGAs — AdABA,)},

where at the last step we have only regrouped the terms. Now, in the term —¢ 030, A5 A,,
one can redefine the indices as « — p, f — «, p — 3, use the antisymmetry of the e-tensor
to write

—ijaﬁaaAﬁ . AM = —5WQB@AQ . Ag,

and cancel it with the other term in the same brackets. The same cancellation occurs in the
second brackets, where one can rename the indices p < a in the term €,,,34,0,A43 and
write it as

EuwapAu0aAp = —€wapAa0uAs.
Finally, in the term —&,,03A40A34,, we can rename the indices as p — 3, a — pu, 8 — a,
write it as

_EuuaﬁAaAﬁAu = _5;wozBAuAaAﬁa

and cancel it with the other term in the third brackets. Therefore, altogether, Vu]*:’ w = 0.
Consider now the operator tr(FWF’W). Let us demonstrate that it can be written as a

derivative 0,K,, and find the current K. Using the definition of F),,, we have

nz
tr(Flo Fly) = tr {@AU — 0,A)F,, + (AA, — AVA@FW} .

With the use of the cyclic symmetry of the trace-operation, this expression can further be

written as

tr(Fly Fly) = tr {(@AU — 0,A)F,, + AAE,, — AMFWAV} —

= tr {(GMA,, — 8VAM)FW + A/J,[AV7 Fuu]} .

Due to the Bianchi identity, V,,FH,, = 0, and the definition of the covariant derivative, the

commutator [A,, F, ] 1s equal to —9,F w- Using this fact, one can proceed further and write

i ) i 1
tr(FloFl) = tr {@Au F - 0,,(AMFW)} = Sewan tt{0uAy - Fas = 0u(AuFas)}
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By means of Eq. (40), this expression can be written as

tr(FwFw) = €wap tr {04, - (00Ap + AnAp) — 0,(A0As + AL ALAR) L =
= Cwap t1 {0, A, - 00As + 0,A, - AsAp — 0, A, - 0uAs — 0, (A, ALAR) }. (41)
Consider now the following expression:
Evap 1T 0, (AVAAB) = €vap tr(0, Ay - AsAp + A0, A, - Ag + AVALOLAR) =

= €wap tr(0,A, - AgAg + 0, A0 - AgAy + 0,45 - AJAL),

where at the last step the cyclic symmetry of the trace-operation has been used. Renaming
the indices in the second term in the brackets as « — v, 8 — «a, v — 3, and in the third

term as § — v, v — «, a — (3, one obtains
Euvaf tr aM(AVAaAg) = Bg/waﬁ tr(@uA,, . AQAB).

This formula, once read from the right to the left, can be used for a different representation
of the second term in the brackets on the right-hand side of Eq. (41). The third term in

that brackets, written (up to the trace-operation) as
‘gul’aﬁ(_&/AH . 8aAﬁ) = 6uyagaHA,, . 8aAﬁ,

can be combined together with the first term. Altogether, one has for Eq. (41):

1
tl"(FH,,FH,,) = é?uyaﬁ tr {28;#4,, . 8aA5 + gﬁﬂ(AVAaAﬁ) — 81,(14#14&145)} .

In the last term on the right-hand side, one can again rename the indices p <= v to obtain

4
tl"(Fw/Fw,) = é?uyaﬁ tr {28“141, . 8QA5 + gﬁﬂ(AVAaAﬁ)} .
One can finally construct the full derivative by adding a vanishing term o< €,,030,,04:
- 4
tr(FFw) = €pvap tr {28“141, 00 Ap +2A,0,0,A5 + gﬁu(A,,AaAﬁ)} = 0,K,, (42)

where the desired current reads

2
ICH = 28“,,0{5 tr (AV&IAQ + gAuAaAﬁ) .
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Next, by means of the equality tr T°T° = %5‘”’, the Yang-Mills action can be written as
S = E tr [ d'xF?
=3 e

Furthermore, since

_ 1 -
Fiu:FHVFHV+§(FHV_FHV>2

and (F),, — F’W)z > 0, one can use Eq. (42) to write
1 4
S > 5 d*z0,K,,.

Using the Gauss’ law, this expression can be rewritten as an integral over a 3D hypersurface,
so that
872

1
SzideM’CM:Q'?,
where the last expression originates from the solid angle 27% of S®. Here Q is an integer,

called topological charge, which characterizes the mapping S® — SU(2) ~ S3. The action

S acquires its minimum at self-dual solutions, for which ij = I, and
A, — 200,01, at |z] — oo, (43)
g

where () is a unitary matrix depending on the angles, det Q2 = 1. Fields yielding a finite

action S correspond to {2’s not reducible to the unity matrix. In particular, the matrix

0 _l’4+if0_"
ol

corresponds to @ = 1, and (£21)" corresponds to @ =n = 0,+1,.... The value of the action
S = 8m2/g* of the self-dual solution with @Q = 1, called the Yang-Mills instanton, will be
obtained explicitly at the end of this Subsection.

. . e + . :t _ — .
[t appears convenient to use the representation x, +i7 & = io, x, with oy = (7, Fi), and

a:a; = 0 + 1Nau0”, O';O'Ij_ = 0 + a0, (44)

Here
4

Eapvs MV = 172737
_5az/7 H = 47
) v=+4

apy

Nauv

Y

0, p=v=4,
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and the symbols ), differ from 7,,, by the signs in front of J,, and d,,. The symbols
Napw and 74y, are called 't Hooft symbols [4]. Accordingly, the matrices 2; and QI can be

represented as € = Z% and Qf = —z"’T;T”, so that
) T,
9,0 = —io, [ X — L2V
e AN I

Using also Eq. (44), one has for Eq. (43)

i oltx 1 T, i x T,T
A — .oz _'_( v MV):_(SQV_‘_?;(IQVO-Q —a((su_ MV):
w7 g |£L’| v |l’| M 72 g ( n ) 2 M 12
: ; a ZyTy 1 a €T,y
= R (:1:1/ + 1Maow Ta0 ) (5“1, - ;2 ) = —R’r]uw,xa(f <6HV — ;2 ) at ‘,j(,’| — Q0.

Using further the antisymmetry of the symbol 7,,, with respect to the interchange of indices

o« v, one arrives at
and thus

Assuming the same angular dependence of Af, for any |z], it is natural to seek Af(x) in the

form

2 f(a?)

Aj(z) = Ena;wxu?, where f(z°) — 1 at 2> — oo, and f(2*) — const-z® at 2* — 0.
The latter condition corresponds to the requirement of having no singularity at the origin.

It turns out that one can indeed construct a self-dual solution corresponding to this ansatz.

This can be done by explicitly calculating F}, and F s and equating the results to each

other. Let us start with calculating F%, = 9,A% — 9,A% + ge®*Ab AS. For the derivative
term one has
0,A;, =
2 f 2 f f 2 ;T
= gnauaau (xap) = 5 |inauup + naual’aaﬂp} = E |i_77a;w.f + 2nauaxuxa (.f ) )
and therefore

a a 2 / f
aMAu - al/Au = R [_2nauuf +2 <.f - E) Ta (l’unaua - l’unaua)] .

The term
2

4
be Ab b
ge* AL AL = 55“ “NopaNevsTals FE
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can be simplified by using the equality

Eabcnbyancuﬁ = 6;11/77(104,6 - 6,uﬁnacw - 50:1/77(1#,6 + 604,677@11/7

which yields
abc Ab Ac 4 2 -f2
ge AHAV = E (x Napw — TpLalaar — 1’u$ﬁ7lauﬁ) —|$|4.

Thus, the field-strength tensor reads

1%

2

f
X [_nauuf + (Iaxunauoz - xazunaua) < ' — ﬁ + E (I2nauu - quanaau - xl/xanaua) =

2 _
= iz |:77a;wf(f - 1) + (x,uxanaua - xuxanaua) (f/ + f 2 f):| -
gz T
_ 4 f(l - f) TpTalava — Tuvlallapo /
- _5 {naw/ SL’2 + ‘SL’|4 [f(l - .f) - l'2f ]} . (45)

For the dual field-strength tensor this formula yields

s 2 1_ TAT o€ pv apa. — LpLafpuy alx
Fl:lu = _5 {guuApnaApf( f> + A pwpllor . prrplle) [f(l_f> —$2f,]} =

ZI}'2 ‘ZI}'|4
2 f(l - f) AL € prpTapa
= _E {gw)\pna}\p 2 + 2 |;|4p P [f(l . f) - $2f/] ’

where, in order to obtain the last formula, we renamed the indices A < p in the term
proportional to Z,Ta€wrpMara- The expression obtained can be handled by means of the

formula

EuvrpTlapa = OawMapr — 5a,unaz/)\ - 604)\77@”/7

which in particular yields €,,x,7a0p = 20au- As a result one obtains

[a 4 f 1- .f l277a v T TxNavx — Lo TXNap
F/.u/:__{naﬂl/ (12 )_ . . |$|4 M[f(l_f)_xzf/] =

|zt
Comparing this formula with Eq. (45), one concludes that the self-duality condition Fj, =

F}, is reduced to the equation

2 f = f1—f)=0
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for the unknown function f(x?). One can straightforwardly check that the solution to this

equation reads

1.2

f(952) = m>

where p is a constant of integration called the instanton size or the instanton radius. Due

(46)

to the translation invariance, one can obtain an instanton solution with the center at an

arbitrary point xg:
2 (x — x0),
Al(x) = Noypw———75—75,
(@) 9 (& = 20)? + 2

whose field-strength tensor is readily seen from Eqs. (45) and (46) to have the form
2

4 p
Fe(x) = —=n4u )
) = g a7

It can now be verified that the instanton action is indeed equal to 87%/g?. One has

1 4 avye 1 16 4 4 !
$=3 @ =g e [

Noticing that 72, = 12 and introducing a dimensionless integration variable & = |z|/p, one

48 o IS 872
S == 2n° / df——7 = —,
2 "y 5(€2+1)4 9?
where at the final step the value 1/12 of the &-integral has been used.

obtains

The Yang-Mills running coupling in this formula is defined at the distance equal to the
instanton size, that is g = g(p). Due to color confinement in Yang-Mills theory, g(p) grows
with the increase of p, and the instanton action S vanishes. Therefore, the weight of large

instantons in the partition function, ~ e™

, is no longer exponentially small in the infra-red
limit. Hence, naively, instantons of large sizes should proliferate in the vacuum, and the
problem arises as how to stabilize arbitrarily large instantons. It turns out that this problem
can be solved [5] by accounting for the interaction of instantons with soft background fields,
which might provide confinement. Such fields stop an infinite growth of g(p) to the infra-red

region [6].
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4. One-loop effective action of a particle in a gauge field. A path-integral derivation
of the Euler-Heisenberg Lagrangian. Schwinger formula and the decay of a

metastable vacuum. World-line instantons.
One-loop effective action of a particle in a gauge field.

Consider the QCD partition function in Euclidean space,
_ a T — [dizL
Z= / DAYDYDype ) 2F,

where the Lagrangian, the non-Abelian field-strength tensor, and the covariant derivative

are defined respectively as

1 a . a a a . abc c - a Aa
L= 1(FW)2 + (v Dy + mp, Fo, =0,AL — 0,A% +igf*™ ALAS, D, =0, +igT"As.

Integrating over the quark fields and using Eq. (7), one obtains
z- / DALt T8 et(3, D, + m) = (exp [V - tr (3,0, + m)])
where
_ a 1 rdtg(Fe))?
(...)Aﬁ :/DAM("')G S dhe(F)
and V is the four-dimensional volume occupied by the system. One can further approximate

the averaged exponent by the first cumulant, and introduce the notion of the averaged one-

loop effective action
<F[AZ]>A; = (tr In(y, D, + m))Aﬁ ,
so that, in this one-loop approximation, the partition function takes the form

Z ~exp [—V : <F[AZ]>AJ .

In the diagrammatic language, the one-loop approximation means that F[AZ] describes a
loop of a quark with infinitely many external lines of the Aj-field, but does not describe
exchanges by the Aji-field inside the loop and/or interactions of two and more such loops.

Up to an inessential additive constant, the averaged effective action can be rewritten as
(T, -

. . 1 .
— <tr In(=iv,0, + g7, T A}, — zm)>A;i =3 <tr In [(—w,ﬁu + g%T“AZ)2 + mz} >Aﬁ )
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One can further use the anticommutation relation for the Euclidean y-matrices, {v,, 7.} =
26,,, (where, for brevity, we avoid writing the unit 4 x 4-matrix explicitly), to represent the

product of two y-matrices as

1
TV = 5(7u7v TV TV — 7;/71/) = 5uv + O,

where 0, = %[%, 7). Using the Kronecker d,, in this decomposition, one can single out

the square of the covariant derivative as
(—i0 + gT ALY (=0, + gT AY) (O + O ) =
= —D> + 0, [—igT* (0, A% + AL, + A%D,) + g*T T AL AY] . (47)

Due to the antisymmetry of 0, the term o, (A0, + A50,) vanishes. For the same reason,

we can write 0,0, A% = £(9,A% — 0,A%), so that

N Ta a a Zg a a a a a
Eq. (47) = —=D2 —igo, 7(5’”,4” —9,A%) + E(T T+ T°T* + T°T" — T"T*) A% AV | .

The symmetric part of the product T%T? yields the tensor
— ma fa b Ab b Ab a pa
O =TA} - T° A, + T A, - T A},

Accordingly, O,,, = TbAZ 1AL+ TAL - TbAZ, where we have changed the order of the two

terms. Renaming the indices a < b, we obtain O,, = O,,, i.e. O, is a symmetric tensor.

ma
Therefore,

0w O = 0.

The antisymmetric part of the product T9T? yields TT® — T°T® = if®°T¢ and we can

continue by writing

i

Eq. (47) = —D? — %O—WTC(auAi — 0,AS +igfUATAL).

Renaming the indices in the last term as ¢ — a, a — b, b — ¢, and noticing that fb@ = fabe,

we obtain
ig aa
Eq. (47) = =D — = 0w T Fj,.

Using now Eq. (8), we can represent the averaged effective action as

1 < dT .0 i
<F[AZ]>A;1 =3 tr/o ?e—m T<<x\ exp {—T [—Di - jq%uT“Fﬁy} } |x>>A :
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Similarly to the 1D case [cf. the equation next to Eq. (3)], the matrix element in this
formula can be represented as an infinite product of the amplitudes of transitions, which
occur during infinitesimal intervals of proper time:

lim [ d*zy---d*x, (2, T|Tpn, ) (Tn, Tu|Tp—1, Tn1) -+ - {1, 1|2, 0) .

n—o0

For each such matrix element, we can give meaning to the square of the covariant derivative
in the exponent in the same way as it was done after Eq. (4) for the ordinary derivative. We

have (not distinguishing upper and lower Lorentz indices)

d4pk M M M a pa\2
ezpkAwk—s(pk—l—gT Af) ’

(2m)t

. Introducing instead of p}, a new momentum,

<37k+177'k+1‘33k77'k> = <xk+1| eeDﬁ |xk> - /

— a — Aa(Tk+11TTg
where Az = 7441 — 75 and Af = Aﬂ(f)

Q. = pj, + gT* A, we can readily perform the Gaussian integration over g;:

4 Az )2
Dk itqf—gTe A Aar)i—eq? _ —igTe A Aar L e
(2m)4 (4me)?
Thus, we obtain
2
- , dvy dhw, - s[C e agaa]
(x| e’ Vi |xy = lim e F =

n—oo | (dme)?  (4me)?

T
— / D:Bue_ifoT dréy 4y P exp (—ig/ dTTaAZl"u) .
P 0

In the last formula,

T

/ = ., where trajectories z,,(7) are such that / drx, (1) = 0. (48)

P 0
2 (T)=24(0)

Here P stands for “periodic”, while “P exp” denotes the path-ordered exponent (with P

standing for “path”), similarly to the time-ordered “T" exp”, which represents an S-matrix.

Altogether, we have for the averaged effective action:

a _ _1 OOd_T —m2T
(PlA) ,, = 2/0 e

T
X / Do il @ik <trP exp {—ig / drTe (AZ:’CH— USVF5V>]> . (49)
P 0 AZ
The term o< 0, F), in the P-exponent, called spin factor, can be described by means of

antiperiodic functions ©*(7). They represent y-matrices in the sense of the substitution
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:*/—% — *. With the use of these functions, the averaged one-loop effective action can be

written as
*dT ) .
(TlAZ]) . = —(28+1)/ d?e—mQT/Dxu/p%e—ffdf(ixi%wm)x
H 0 p A
T
(e [y [ (g, )] )
0 Ag
Here

/AE

Yu (T):—d’u (0)

(A stands for “antiperiodic”), and s is the spin of the fermion (e.g., for a quark, s = 1/2).
Using the non-Abelian Stokes’ theorem, the spin factor can be expressed through the

other Aj-dependent term,

(W (7)) 4 = (W(O)) 4y = <trP exp <—z’g /0 ' dTT“AZ:’Eu) >Aa , (50)

as

exp {—2 /OT dT%%m} (W(C)) g

where the variation with respect to the surface element lying on the contour recovers the
field-strength tensor. Therefore, the whole dependence of the (unaveraged) effective action
['[A%] on the gauge field Af is reduced to that of the phase factor W (C'), which is defined at
a closed contour C' parametrized by the vector-function x,(7). This gauge-invariant phase
factor is called Wilson loop. Often, its average, Eq. (50), is for brevity also called just
a Wilson loop (not Wilson-loop average). The same reduction of the Af-dependence to
that of a Wilson loop holds for any gauge-invariant amplitude describing vacuum—vacuum
transition.

In a quantum theory, unlike the classical one, Wilson-loop averages are observable. In
the simplest, Abelian, case, this is illustrated by the Aharonov-Bohm experiment. It is
a modification of the famous experiment with two screens discussed at the beginning of
the course, where one of the screens has two slots, and a detector measures at the other
screen the interference picture produced by the electron beams, which pass through these
slots. In the Aharonov-Bohm experiment, one places between the two screens a solenoid,
perpendicular to the line, which connects the slots. The magnetic field (which has only one

component) is non-vanishing, B # 0, only inside the solenoid, while everywhere outside it
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B = 0. Electrons, in general (i.e. unless their beams cross the solenoid, that can happen
with the vanishing probability if we make the solenoid infinitely thin), pass through the
region where B = 0, but the vector-potential is non-vanishing, A, # 0. That turns out to
be sufficient for the interference picture to change with the change of B.

To understand the reason for that, consider the amplitude of probability for a (massless
and spinless, for simplicity) electron to propagate from the source at the point x to some

point y at the screen where the detector is located. This amplitude reads

Here (—e) is the electron charge, Cy and C, are the trajectories of the beams passing through
the two slots and having the solenoid between them, and

o= / dT / Dzyeido 450,
C 0

z(0)==x
z(T)=y

where C' is either ] or C; The intensity of the interference pattern, contained in

U(z,y|A,)|?, is described by the cross term
W (z,y|A, y

e exp [ie % dzuA#] )
Clu(Cg)*l
where (C3)~! denotes contour Cy passed in the opposite direction, i.e. from y to z. This

expression is just the Wilson loop, and it does not depend on the shape of the closed contour

C1 U (Cy)7! because, due to the (Abelian) Stokes’ theorem, it equals to

e%& Jdspv Fuw _ eieBS’

where S is the area of the cross-section of the solenoid (and BS is the magnetic flux through
the solenoid). This is the formal reason why the interference picture changes with the change
of B. We also see that, by means of the path-integral representation for the probability
amplitude, Wilson-loop averages are indeed observable in a quantum theory, i.e. their values

can be measured experimentally.

A path-integral derivation of the Euler-Heisenberg Lagrangian. Schwinger formula.

Following the method described in Ref. [7], we calculate now the one-loop effective action of

an electron in a constant Abelian electromagnetic field. Here “constant” means constancy
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(i.e. independence of a space-time point) of the field-strength tensor F),,. Accordingly, the
vector-potential of such a field has the form

1
Ay (z) = §quvu' (51)

The field A,(x) is an external classical field, therefore there is no average over it, and no
notion of the averaged effective action. Omitting “tr” and “P”, which apply only to the

non-Abelian case, we can write the effective action as

4T
T[A,] = —2/0 ?e—mQTx

T
1. 1, _ . .
X / Dl’u/ D, exp {—/ dr (Z:Bi + 5@%@% +ieA,x, — ze@bM@bVFuu)] )
P A 0
For the sake of generality, we perform now all the calculations in a D-dimensional Euclidean
space.

We start with the calculation of the corresponding bosonic determinant. Note that, for
a free boson, the path integral in D dimensions has been calculated in the 2nd lecture, and

reads .
/P Dz, exp {—i /0 dn‘cg] — [detp(—0?)]""* = (4xT) P/, (52)

For the vector-potential (51), the term ieA, &, yields the bosonic path integral of interest

1 T
/ Dz, exp {—1/ dr (:ci - 2ieFW:'cH:c,,)] )
P 0

Due to the periodic boundary condition, z,(7") = z,(0), one has fOT dra,x, = — fOT drz,t,,
and the path integral can be written as
~1/2

I . R
/PDxu exp {—1 /0 drz, (—835“1, + QieFW@T) :c,,] = [detp(—ﬁf 1+ QieFﬁT)] =

. . —-1/2
— (47T)~P/2. [detp(l - 2¢eFa;1)} .
Here O denotes a 4 x 4-matrix, and in the last step we have used Eq. (52). Further,

I and using the known Taylor series

In(1+4x) = i (=0 sz,

n

representing det as e

n=1

one has

[detp(i — 2ier 0 ) IR [—% 3 (‘172"“ (—2ie)"(tr F") - (Tep o) . (53)
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The functional trace in the periodic case, Trp, can be calculated similarly to the trace
in the antiperiodic case, Tr4. To do so, consider the following quantity depending on some

parameter C":

o p(C) = Trapl(d: — ). (54)

By means of the Taylor expansion, it can be expressed through 01(417)]3(0) as

o) =ty () PO (59

Now, since the spectrum of the operator (9, — C) is known in both the periodic and the an-
tiperiodic cases, further calculation can be done by a direct summation of the corresponding
eigenvalues.

We start with the antiperiodic case. There we have

+00 +00 <21 1
(1)0 _ 1 _ —z-T(n+§)—C.

n=—oo n=—oo

In the sum corresponding to the first addendum in the numerator, (n = 0)-term cancels
with the (n = —1)-term, (n = 1)-term cancels with the (n = —2)-term, and so on, i.e. in
general every n-th term with n > 0 cancels with the (—n — 1)-th term. Thus, only the
second addendum in the numerator contributes, and we have

+oo 1

() =-C . .
(©) E:(%)m+§ﬁ+02

Noting again that (n+ 3)?| = [(—n — 1) 4 3|?, we can finally write this sum as
n>0

1
= (I + 12+ C2

One can further use the following known representation of the hyperbolic tangent:

() :;'im%;ﬂ >

One obtains
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Using Eq. (55), we can now calculate UXL)(C’) as

n—1
men_ L 1 (d T
74 (C) = 2(n—1)!<dC) tanh(z ‘

Introducing instead of C' a new parameter x = C'T'/2, one can write this expression as

o™ (C) = —ﬁ (%)n(%)n_l tanh

To perform the differentiation, one can Taylor expand the tanh-function as

(56)

cr

IIZ

- 2%(2% — 1)By 21
(2Kk)! ’

tanhz =
k=1

where By, are Bernoulli numbers, and apply the formula

(%)nw = m(m — 1) (m —n + )™,

This yields

d\"" sy o 2k —1)! /CT\*™" n
_ e _ e _ -n _ X "/ | >
<d9§) x (2k—1)--- 2k —n+ 1z ok — ) ( 5 ) for k > 5

and 0 for & < . Equation (56) then leads to

™) () = _;(T)"ki 22 —1)By, (26— 1)1 (g)%—"

2 =, (2k)! 2k —n)! \ 2 B

1 S (2% — 1)Bay 2k | ~2k—
= _ T2k n
(n—1)! 23/2 2k - (2k — n)! ¢

We recall now the initial Eq. (54), and take the limit C' — 0. (That is why the Taylor
expansion of tanh was legitimate.) In this limit, only the (kK = n/2)-term in the sum

survives, and one obtains the desired result

1

ol

Tra(0-") = (2" —1)B,IT" for even n. (57)

For the periodic boundary conditions, we should use in Eq. (55) ag)(C) without the

(n = 0)-mode, i.e.
+00 1

1
n=-—oo T
n#0

The reason for that is because this mode, corresponding to the translation of the contour as

a whole, has already been taken into account by demanding that not only z,(7") = x,(0),
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but also that fOT drx, (1) = 0 |cf. Eq. (48)]. In other words, z,(7) describes the shape of
the contour, whereas the position of the contour corresponds to the (n = 0)-mode. The
position-vector, once integrated over, yields a factor of volume in the initial relation Z ~
exp [—V . <F[AZ]>AJ.

Proceeding further, we have

+oo .21 +oo
i —C T\2
)= 3 Y _c<_> S
— 2T C? 2m — 9 CcT
n;#ooo Tn —I— n;#ooo n + o
Such a sum was calculated at the end of the 2nd lecture:
o 1 o { a(CT 27r]
L ()2
< c cT 2 cT
e (Tf)

One gets

T 1
Ug)(C’) =3 <cothx - —)

T

)
x=CT/2

and, by means of Eq. (55),

0y () () (o)

The differentiation can again be performed by using the known Taylor series,

x=CT/2

1 o~ 2% 2%k—1
ther — — = ——B -
cothz — — ; 20 T,

ey L (TY' S 2 E— 1)l (OT\*
p (C) 1) (2) k;ﬂ (%)!B?’f (2k —n)! ( 2 )

By, 2k ~2k—
= T c=n
T Z 2k =)

so that

In the limit C' — 0 of interest, only the (k = n/2)-term in the sum survives, and we obtain
the desired result:

1
Trp(0-") = —ﬁBnT" for even n. (58)

Using Eqs. (57) and (58), we can now proceed with the calculation of the bosonic and
fermionic determinants. For the bosonic determinant, Eq. (53), we have
R . —-1/2 1 N (=1t R "
[detp(1 - 2ieF8T_1)] —exp |5 Y EU" ey (trfm - <__B ) _

2 — n

n even
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= exp —% Z 75 (2ieT)"(tr F™) | . (59)

n even

The fermionic determinant appears from the corresponding path integral as follows:

T 1.
/ D1, exp {—/ dr (51@@” - ieqﬁuib,,F“,,)} =
A 0

T
Dijy, exp [—% / drip, (00, — zzeFW)wy} — [deta(d:1 - 2ieP)]
A 0

Using the normalization of the free path integral,

1/2

/ Dipe 2o e — [dety 0,]'/2 =1,
A

we continue:
1/2

dets (0,1 — 2ief)| " = |deta(i - 2ief )] v

— exp E 3 (—172’” (—2ie)™(tr F™)(Tr 4 a;“)] .

n=1

Using finally Eq. (57), one obtains

o

7 . 1/2 1 Bn n . n Fn
[detA(ﬁTl —226F)] = exp |5 Z (2" — 1)(2ieT)" (e )| (60)

To accomplish the derivation, we should calculate the sums in Egs. (59) and (60). We

proceed in Minkowski space-time, where
tr (F?) = 2(a® — b?),

where

a? = % [E2 ~H*+ /(B2 - H2)2 + 4(EH)2] ,

and

1
b2 2[ —E2+ /(E? +4(EH)}
are related to the two invariants of the electromagnetic field as a? — v* = E? — H?, a?b? =

(EH)?. Similarly, one has
tr (F°") = 2[(a®)" + (—0°)").

Therefore, one can represent the sum in Eq. (59) as

o e}
n eve

"ty = S D i) (@) + (—B). (61)

—_

)
S
S

n=2
n even
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Using now the Taylor series

SN _ i( 1)k22+=1 Bya?t Z (2iz)" B,
r — k(2k)! —~ n-nl "’
one has
sin(eaT) sin(iebT") sin(eaT") sinh(ebT)
Eq. (61)=In——+In————= =1
0 (61) = I — =+ = = @)

Plugging this expression into Eq. (59), one obtains the bosonic determinant

-1z (eaT)(ebT)
~ sin(eaT) sinh(ebT)’

detp(1 — 2’6'6}%0;1)}

Similarly, using the Taylor series

Incosz = Z (2iz)" (2 _1)Bn,

“— n-n!
one has for the sum in Eq. (60):
E i Bn (2" — 1)(2ieT)"(tr F™) = i Bn (2" — 1)(2ieT)"[(a*)™? 4 (=0*)"/?] =
2 ~—~ nln “—~ nln

= Incos(eaT’) + In cos(iebT’) = In[cos(eaT’) cosh(ebT)].

Therefore, the fermionic determinant reads

. . 11/2
deta(0;1 — 2i6F)] = cos(eaT’) cosh(ebT).
Altogether, one obtains the proper-time representation for the (unsubtracted) Euler-

Heisenberg one-loop effective action of a spin—% particle in 4D Minkowski space-time:

- o 9 /oo d_Te_mQT (eaT')(ebT)
plspin—1 = (4m)2 J, T3 tan(eaT’) tanh(ebT)

Accordingly, for a spin-0 particle, the effective action reads

1 <dT o eal’)(ebT
F[Au]spin—o — / T ( )( )

(47)? T3° sin(eaT’) sinh(ebT)

Consider now the case of vanishing magnetic field, H = 0. For a spin-0 particle, one has

77L2 T

o 2 o0 —
1—‘[Ew]spin—o = —1 / d—Te_mQTi. cE1 = @ / d_x : e. - s
(4m)? J, T° sin(eET) 4 o =2 sinz
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where x = eET is the dimensionless integration variable. In the vicinity of the points

T = mn, one can write
sinz =sin(z —mn +mn) = (—1)"sin(x — mn) ~ (=1)" - (x — ™).

One can now calculate the imaginary part of the effective action by shifting the poles down-

wards from the real axis:
I L 5( )
m—————=—m-0(x —mn).
r —7mn + 10

One obtains

Im 1—‘[Ew]spin—o =

CEP SN UM e (CBP S (D™ o ()

pu— eE .
16m <= (mn)? ¢ 167% <=~ n? ¢

Similarly, in the spin—% case, one has

2 Cdr e eB
F[E]spin—% = _(47'(')2 (6E)2/0 _ . .

2 tanz

—i0 is —m-0(z—mn). Therefore,

2 2
(eE)2 e er (eB) e em
I T[]y, 1 = < Z o Z —— (63)
n=1 n=1

Equations (62) and (63) are called Schwinger formulae. They yield the rates of production
of particle-antiparticle pairs, i.e. the number of pairs produced in a unit 4D volume. The
Schwinger formulae are explicitly nonperturbative, i.e. nonanalytic in eE. The probability
for the vacuum of a given, either scalar or spinor, field theory (contained in the 4D volume

V@ in the presence of a constant electric field E) not to decay, called vacuum persistence

—2V®).ImT[E]

probability, is given by the expression e . This quantity is exponentially small.

Accordingly, the probability for the vacuum to decay by converting its energy to the pro-

duction of particle-antiparticle pairs, i.e. the probability of vacuum non-persistence to the

applied electric field, is (1 — e_2v(4)'ImT[E]>_

The factor of 2 in the exponents above is because the probability is equal to the square
of the pair-creation amplitude. It appears naturally in the following interpretation of the

Schwinger formula [8]. One can split the full momentum p of a produced pair as p = (p1, p)),

where p,| = % is the part perpendicular to E, while p| = —E is the projection of p on E.

In the spin-0 case, consider the quantity

n+1

Inf1 +p(p.)] Z P (PL); (64)

n=1
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where
pl +m’
eE ’
One can integrate Eq. (64) over d*p by using the following equalities:

p(PL) = exp (—7? :

2
d®p eET _zm?n win (eB)*T e e
Bl Sy = e | d’pleTeE = . ,
[ o) = e [ e =

Here T is the time of observation, and the factor e ET" is produced by the “empty” integration

over p|. Accordingly, Eq. (64) yields

(eE)2VW SN (—1)"+ o2

VO [ it o) = e S0 e (65)

n=1
where the 4D volume occupied by the system is a product of the 3D volume and the time

of observation, i.e. VW = VOT. Equations (62) and (65) lead together to the following

formula:
3

VW . Im I[E)pin_g = V@ / (%’3 In[1 + p(p1)]. (66)

Similarly, in the spin-% case, one can use the expansion

Inf1 - p(p.)] = - 3 2R

n=1 n
to obtain ,
d®p (eE)2VW N e "o
1748 / In[1 — = — .
(27’(’)3 Il[ p(pl)] (27’(’)3 ; n2
Comparing this expression with Eq. (63), one concludes that
@) @ [ P
2V@W . Im F[E]Spin_% =2V Ok n[l — p(p1)l, (67)

where the prefactor of (—2) on the right-hand side is due to the spin and statistics of a
fermion. One can now see from the representations (66) and (67) that the (n = 1)-term in

2 - Im I'[E], namely
(eE)? _am?

eFE
@r3c

is equal to the mean number of pairs in the unit of the four-volume V®. Terms with

p=(2s+1)

n > 2 describe an additional Fermi-repulsion or a Bose-attraction of produced particles at
their given mean four-density 2p. These higher-order terms represent quantum-mechanical

exchange corrections, and emerge due to the coherent pair creation, that is the creation
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of n > 2 pairs in the elementary four-volume of pair formation ~ (eE)™2. Schwinger
formulae (62) and (63) represent the virial expansion of 2-Im I'[E] in powers of the parameter
e_% ~ p(eE)™%, which is thus the mean number of pairs in the elementary four-volume of
pair formation. Such an expansion is analogous to that of the pressures of the ideal Fermi
and Bose gases in powers of the mean number of particles in the three-volumes.

The pre-exponents and the sums over n in the Schwinger formulae emerge from the
determinant of quantum fluctuations around the classical trajectory of a created particle-
antiparticle pair in the electric field. As such, they can only be obtained by some nontrivial
methods, like the one described above. Instead, the exponent e_%;n is of the semi-classical
origin, and can be obtained by using elementary quantum-mechanical methods. Indeed, the
creation of the pair can be viewed as a transition of a particle from the initial state with the
energy €i, = —\/W+6Ez to the final state with the energy e = \/W—l—eEz.
Here, p(z) is the semi-classical momentum of the particle, and we have assumed that the
electric field points to the z-direction, so that the corresponding potential reads ¢ = —FEz.

The transition from the first state to the second one occurs under the potential barrier,

where the momentum of the particle, p(z) = /(¢ — eEz)2 —m2, is an imaginary-valued

function. The semi-classical probability of the under-barrier penetration reads

e+m
el

w x exp | —2 / dzlp(2)|] ,
E
where the turning points are defined by the equation p(z) = 0. Introducing, instead of z, a
new integration variable x = ¢ — eFz, one has
2 2

2 m mm mm
wW X exp {——E/ dzv/m? — x2] = e_ﬁ' 2 =e B .
e

—m

Thus, the semi-classical exponent from the Schwinger formulae is reproduced.

World-line instantons. An interpretation of the Schwinger formula as a decay of a

metastable vacuum.

Consider the one-loop effective action of a scalar particle in an Abelian background gauge

field: . )
o T 2 .
I'[A,] = / ar e " T/ Dz, exp —/ dar (e +ieAud, )| -
0 T P 0 4
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Introducing, instead of 7, a new integration variable u = 7/T', one has

T j:.2 1 1 1
dT(—”+ieA:b>— /du:c —He/ duA,i,.
/0 4 e ] 4T 0 e
Introducing also, instead of 7', a dimensionless variable
Thew = m°T, (68)
and denoting it henceforth as just 7', one further has

_[dT m? (! ! :
F[Au]—/o T e /PDxuexp [— <4T/ dui? +ze/0 duA,z, || .

One can now perform the T-integration first, before the path integration. That yields

1
I'A,] =2 | Dz, - K¢(2T,) - exp (—ie/ duAH%) ,
P 0

where K is the MacDonald function, and

1
ﬂz%t/mﬁ (69)
0

is the saddle point of the T-integral. One can furthermore assume that 7T, > 1 to obtain

27 ! !
~ 3\ — / G P |~ | m / dut? + ie/ duA, i,
fo duz2) 0 0

It will be shown below that the condition T, > 1 corresponds to the weak-field approxima-
tion.

In the equation of motion,

ass _is
du 0, N dx,,’

one should now use the derived world-line action |9

S'=my| du:):2+ze/ duA,,,.

We consider again constant fields, A, (z) = 2 x, I, so that

1 ie 1
S=m /0 dui? + §Fuu/0 duz, T, (70)
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The resulting equation of motion,
d ie . . e, 0 [ . de .
m-———r + —F, i, = —F,\— du'z, i\ = —F,\%y,
du 1 2 2 ) 2
fo du'i? nJ0

(71)

takes a simple form
Ty

mi
\/fol du/z2

A periodic solution z,,(u) to this equation is called a world-line instanton [9, 10]. Multiplying

=iek,T,.

Eq. (71) by &, and summing over p, one gets &,%, = 0, that leads to the constancy of the

velocity:
i? = constant = a’. (72)
By means of this formula, the condition 7} > 1 takes the form
(73)

ma > 1.

We consider now a class of time-dependent background fields, for which it is possible to

find the stationary instanton paths explicitly. In Euclidean space, such fields are
(74)

Ag = A3($4), AH =0 for 1% §£ 3.

Since F,; = F, = 0, the equation of motion (71) yields & Z9 = 0, and therefore
Z7 = constant, ©9 = constant. For x; and x5 to be periodic functions of u, one requires
&9 = 0. Thus, Eq. (72) yields

T =
a® = i3 + 3. (75)
The equation of motion takes the form
rea
Ty = iy,
and reduces to the equations
) iea . tea dAs . iea .
T3 = —F34ZL'4 = - —31’4 and Ty = ——F34£L’3. (76)
m m  dxy m
The first of these equations can be integrated, that yields

. iea
r3 = —— A3($4),
m
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where the additive constant of integration has been set to 0 due to the periodicity of 3.

\¢4|:mza.\/1+{“‘3Twr. (78)

By virtue of Eq. (72) and the periodicity of z34(u), the world-line action (70), calculated at

Accordingly, one has

the stationary (i.e. obeying the above equations of motion) solutions, reads
1
S =ma + Z@/ dux3F34j:4. (79)
0

One can furthermore apply (twice) integration by parts, along with the second of two

Egs. (76), to write

1 1 - 1 - 1
. ; iea . lea )
/ du(iy)? = —/ duxrsiy = — duxryFayTg = ——F34/ duxsty.
0 0 m J, m 0

Therefore,
m [ 1
—/ dU(I4>2 = —i6F34/ duxgx'4.
a Jo 0

Using this expression for the second term on the right-hand side of Eq. (79), we have

S=ma—" /01 duin)? =™ [cﬂ - /01 du(:b4)2] _m /01 du(iy)?, (80)

a a a

where, at the last stage, Eq. (75) has been used.

Consider now a constant electric field E, for which
A3(.§L’4) = —’LESL’4 (81)

Accordingly, Eq. (78) takes the form

dIL’4

and its solution reads

Integrating this equation, we obtain

23(u) = = cos (WU) . (83)
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For the solutions (82) and (83) to be periodic with period 1, the constant a should have the
form

a:ﬁ-Qﬁn, where n=1,2,....
ek

With this expression for a, condition (73) becomes
2

1<<ma:7:—E~27m.

This inequality should hold for any integer n, even for n = 1. That yields the weak-field
condition which, with the speed of light ¢ and the Planck constant A written explicitly, has

the form

2rm?c?

EF<

~ 10" V/cm.

Even the strongest experimentally accessible electric fields satisfy this condition well
enough [11]. Thus, the saddle-point trajectories (world-line instantons) in the path inte-

gral are circles of radius 7 [9]:

e

x3(u) = % cos(2mnu),  x4(u) = % sin(2mnu).

The integer n counts the number of times, which the closed trajectory is travelled. The

corresponding action of the world-line instanton, Eq. (80), reads

m (2mnm\ > [ eE ornm\? 1 7anm?
S =— du sin?(2 =_. L= = . 84
a ( el ) /0 usin’ (2mnu) 2mn ( el ) 2 el (84)

An important conclusion is that this expression coincides with the exponent in the Schwinger

formulae, Egs. (62) and (63). The action (84) at n = 1 is nothing but an elementary (i.e.

minimal nontrivial) flux of the electric field through the circle of radius %. Indeed, such
an elementary flux reads eE - ﬂ(%f = ’Zg. Multiple fluxes can be obtained from the

elementary one upon the multiplication by an integer n.

We will now demonstrate that such a circle of radius

R

m
— 85

5 (85)
can be viewed as a critical 2D bubble of the metastable vacuum phase. This phase, charac-
terized by the electric field F, is decaying to a stable phase, filled with particle-antiparticle

pairs. Whether a bubble of a given radius R, spontaneously created in the metastable

phase, has a chance to drive the vacuum to the stable phase depends on the magnitude of
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R. Namely, if R is smaller than the radius of a critical fluctuation, then the bubble will
collapse back. Instead, if at least one bubble of the radius equal or larger than the critical
one appears, it starts an unlimited expansion, unless the whole space is filled by its new,
stable, vacuum phase. One can readily find the critical radius by extremizing the action
of a bubble. In the case of pair-production, the created bubble is equivalent to a particle
of mass m, evolving (in Euclidean space under consideration) along a circle of radius R.
Such a bubble increases the action of the vacuum by an amount of m - 27 R, and decreases
this action by an amount of the corresponding flux eE - mR? of the electric field, which is
“eaten up” inside the circle. Thus, the action of the “bubble”, Sy[R], should be defined as a

difference of these two contributions to the vacuum action:

Sp[R] =m-27R — eE - TR

The extremality condition, % = 0, indeed yields the value of the critical radius given by
Eq. (85). The corresponding action of the critical bubble, S,[R.] = ’%&2, coincides with

Eq. (84) at n = 1.

Finally, we discuss the difference of the case where the produced particles are fermions,
Eq. (63), from the case where they are bosons, Eq. (62). In the spinor case, one should
insert into the path integral the following spin factor [cf. Eq. (49)]:

S[z,(7), A,] = try exp {%eaw /0 ' drFW(:c(T))] :

where 0, = £[v,, 7], and “L” stands for “Lorentz”. For the vector-potential given by
Eqs. (74) and (81), one has F),; = F,5 = 0, while F3, = iE, so that

ie T eET
exp | o [ drFuta(r)| = exp | << 0 - 0w)| —exp(-eETow).
0

To calculate the trace over Lorentz indices, we use the anticommutation relation for the
Euclidean vy-matrices, {v,,7.} = 26,. - 1. According to this relation, vi =1 for any pu =
1,2,3,4, and v4v3 = —7y374. Therefore, (v374)? = 73747374 = —1, and, in general, one has

(137)* = (=1)" -1, (337)** = (=1)F - v,

where k = 0,1,2,.... Thus, the exponent exp(—C' - y374), with a real-valued constant C/

can be decomposed as

o S o




o6

(_l)kc2k
(2k)!

o0
One can now substitute )
k=0
that, due to the cyclicity of the trace-operation, trys3y, = 0. Finally, since o34 = %(7374 —

= cosC, and use the formula trvysys = tr(—v473), so

Y47Y3) = 7374, One gets
S[xu(T)y A“] = trL eXp(—eET”y3fy4) = 4COS(€ET>, (86)

Note that the cosine-function is the sum of two imaginary exponents. For this reason,
the spin factor does not affect the saddle-point value of proper time, Eq. (69), nor does it
modify the equation of motion (71). Rather, the spin factor itself should be calculated at
the saddle-point value (69), equal to

ma  m?

=% T ™

Tdimonsionloss
*

The corresponding dimensionful value differs by a factor of 1/m? [cf. Eq. (68)], and reads

™
eE’

dimensionful __
T, =

Plugging it into Eq. (86), one obtains
Sleu(r), Ayl = 4- (=1)".

Additionally, one should account for the overall prefactor of (—1/2) from Eq. (49). Thus,
the imaginary part of the effective action in the spinor case should differ from its counterpart

in the scalar case by a factor of

2. (1),

Comparing Eq. (63) with Eq. (62), we see that this is indeed the case. This fact demonstrates
the consistency of the above calculation, where the T-integration is done before the path
integrations over x,(7) and v, (7), with the calculation of the previous Subsection, where
the path integrations were done first.
Note finally that the factor (—1)"*! which alters sign at every winding of an electron
m

around the circle of radius %, resembles the spin factor of a free fermion in 2D. This spin

factor [12] is equal to ™%, where

1 (T
Q= %/0 dre i,y

is an (integer) algebraic number of self-intersections of the trajectory. At every counter-

clockwise winding of the trajectory, () increases by 1, while at every clockwise winding, ()
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decreases by 1. One can consider a representation for the propagator of a fermion as a
path integral over all the trajectories connecting the initial and the final points. The sum
of contributions to this path integral produced by two such trajectories, whose @)1 and @)

differ from each other by 1, cancel each other, because
e 4 ¢ = (1)@ [1 4 (—1)9 9] = 0.

For this reason, fermionic random walks are smooth compared to the crumpled bosonic
random walks. Formally, this fact is expressed by the different values, for these two types
of random walks, of the critical exponent v in the formula R ~ L”, where R is the distance
between the initial and the final points, and L is the length of the walk. This critical
exponent is equal to 1/2 in the bosonic case, and to 1 in the fermionic case. The number

1/v is called Hausdorff dimension of the random walk.

5. More applications of path integrals: Polyakov’s derivation of the one-loop running
coupling in 2D nonlinear O(N) sigma-model and in 4D Yang-Mills theory. Fujikawa’s
derivation of chiral (Adler-Bell-Jackiw) anomaly in QED.

Polyakov’s derivation of the one-loop running coupling in 2D nonlinear O(N)

sigma-model and in 4D Yang-Mills theory.

In this chapter, we discuss the method of renormalization [12, 13| based on the integration
over fields with large relative momenta. We start with the perturbative renormalization of

2D nonlinear O(3) sigma-model, whose bare action has the form
1
s =3 [ @m
where n = (n1,ny, n3) is a vector of a fixed length, n? = g%. In what follows, we denote

N-dimensional vectors as n, and 2D-vectors as €. One can introduce spherical coordinates

in the field space, so that

1
ny =/ — — N3 Ccosp, 1/ —nZ - sin p,
g

and choose ng to be a rapidly varying field component, which will be integrated over. We

ns - 8un3
Oyny = — - - COoS p — —n3sinp - O,

have
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ng - d,n ) 1
Ouny = ———12 . sinp + — — 3008 ¢ - 0.
/1,2 Vg
9° 3

Accordingly, the squares of the derivatives read

s (ng- 8“713)2 2 1 2\ 2 2 .
(Oum1)” = —F——5— 5 COsTp + i ng | sin® g - (0,9)" +sin(2¢) - ng - dyngz - O,
g2 3
ns - 0,ns3)? . 1 .
(8“712)2 = 7( 31 “ns) sin? o + (? — ng) cos® p - (8H<p)2 —sin(2¢p) - ng - Guns - Oup.
g2 '3

Furthermore, under the assumption |ns| < % ;> one can approximate the first terms on the

right-hand sides of the last two equations as

9)  0,m2)2
7(7131 1) cos” ¢ =~ g*(n3 - unz)* cos® v, Msm ¢ =~ g*(n3 - Ounz)”sin” .

n3
g° 3 92 3

Using this approximation, one has

(Oum)? = (Bm1)? + (Buma)? + (Buns)? = (Bums)? + (gi - n) - (Oup)? + Pn2(Buma).

With the use of this expression, the partition function splits into the parts with low and

high momenta:

Z= / De(pe 22 [ PO

0<p<A

1 2
<[ Dt e [2 [ #ensr -5 [ denio,m) ]

AN <p<A
In the weak-coupling regime, g < 1, the term of the order of g2 in the last exponent can be

omitted. The ns-integration yields, up to an inessential multiplicative constant, a factor of

exp {1/d2§< > (0%0)2}’ where <n§): / Dn?)(ﬁ)ng(g)e_%fde(au"3)2.

AN <p<A

The partition function takes the form

2= / Dep(f)e 27 FEO,

0<p<A’
where
1 1
22 (n3). (87)
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The mean value (n?) is represented by a tadpole diagram:

(n2) = / d’p P 1 hdp® 1 A
3 (2m)?  p? At Jo P> 2 A

N <p<A
To derive the renormalization-group equation for ¢ in a differential form, one chooses A’ =
A — dA, that yields
A 1 dA dA
lnﬁzlnﬁzln 14— ) ~ )

Equation (87) takes the form

The left-hand side of this equation, once expanded up to the term linear in dA, is

dg2
dA

= —dA-(=2)- g dg _ ,dg

g — g A = (Y - ) ek

Thus, the differential renormalization-group equation reads

dg _ ¢
d\N  4rx’

Alternatively, it can be written as an equation for g?(A). The reason is that, by means of
the constraint n? = g%, the (bare) partition function of the model is expressed through the

square of the (bare) coupling, g2, and not through g itself. One has

dg® dg g° g*
A g n. Yoy (L) =L
an T an T (

The fact that the corresponding (-function,

Bt =2 (88)

N=3 o’

is negative-definite means that 2D nonlinear O(3) sigma-model is asymptotically free, simi-
larly to the Yang-Mills theory.

The perturbative renormalization of 2D nonlinear O(NV) sigma-model, presented above
for N = 3, has a disadvantage that, at the very beginning of the procedure, one reduces the
number of dynamical degrees of freedom to (N — 1), thereby breaking the O(N)-symmetry
down to O(N —1). This problem can be circumvented if one renormalizes the model without

recourse to perturbation theory. A way to perform such a nonperturbative renormalization
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is to reduce the partition function of the model to a saddle-point path-integral. This can be

done by implementing the constraint n? = g% through the functional -function

and further representing this d-function by means of a Lagrange multiplier A({ ). The par-

tition function then reads

Z:/::oD)\/Dnexp{—%/d2§ [(8un)2+)\<n2—g—12)}}.

Integration over each of N components of the field n yields
1 —
/Dm exp {—5 /d2£ [(9m)* + Anﬂ} [det(—82 + A(€))] 7 =

= exp [—% tr In (=0, + A)} :
Therefore, the partition function has the form
Z= /HOOD)\eXp [—Etr In (—02 —l—)\)+i/d2§)\} :
oo 2 29
Now, if A = O(1) at N — oo, then this is a typical saddle-point integral, since the action
is of the order of O(N), while the entropy, represented by the integration measure, is of the
order of O(1). One can check this a posteriori, by calculating the saddle-point value A, .
The saddle-point equation, which one obtains by varying the action with respect to A, has

the form

N ; 1 n 1
I' — [
—05 + Asp. 2¢?

In terms of the Green function of the n-field, G(z,y|\) = (z](=92+X)~"|y), the saddle-point

equation can be written as G(z,z|\sp) = ﬁ' Seeking a translationally-invariant solution

to this equation, As_p,({) = M?, one has

N M qp? N A2
__N _'2_|_M2:E ; mﬁﬂlnm (89)

0<p<A

Here, at the last step, we have disregarded M? compared to the square of the UV-cutoff, A2,

and approximated In 2 ]JVFIQJ : by ln . Equation (89) yields the desired saddle-point value of
the Lagrange multiplier:

4T

M? = A2 e #%, (90)
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Such an appearance of the quantity M, with the dimensionality of mass, represents the
phenomenon of dimensional transmutation. This quantity is manifestly nonperturbative,
i.e. nonanalytic in g. Note that all N components of the n-field acquire the same mass, and
thus the O(N)-symmetry is not broken within this method of renormalization. Furthermore,
the obtained s, is indeed of the order of O(1) at N — oo, that justifies our use of the
saddle-point approximation in this limit.

One can now use the expression

o, 4m 1 2 1

9 =—=—=—=—-F, (91)
N In ]\1}—22 N In ﬁ
to derive the g-function in the leading large-N approximation. One has
dg®> 27 (-1) 1 or [ Ng2\’
AL =D A R - I
TS T S S A N
Thus,
N 4
B(g%) = ~29 a4t N - .
27
The corresponding perturbative result for the one-loop -function, valid at any N, reads [13]
2 (N —2)¢*
er = -7 - 92
Bpen(99) =~ (92)

In particular, it reproduces correctly the above-derived (N = 3)-result, Eq. (88). Thus,
2D nonlinear O(3) sigma-model is asymptotically free at N > 2, that is the origin of the
dimensional transmutation. For N = 2, there is no asymptotic freedom, since the model
with the symmetry group O(2)~U(1) is Abelian.

We apply now the above-illustrated method of perturbative renormalization to a deriva-
tion of the one-loop running coupling in 4D Yang-Mills theory [12|. The bare action of the
theory has the form

1 a
SO = 4—93 d4I(F,uV[A])2? (93)

where F§, [A] = 9,A% — 0, A% + f**° Al A¢ is the non-Abelian field-strength tensor, and g is
the bare coupling. One splits the total Yang-Mills field A} into the low- and high-momentum
parts,

Al = B, +a,. (94)
In the so-obtained partition function, one integrates over the high-momentum fields aj,, and

arrives at an effective action S for the low-momentum fields Bj;. As in any renormalizable
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field theory, like 2D nonlinear O(3) sigma-model considered above, the functional dependence
of this effective action on By, and on the renormalized coupling g should be the same as that
of Sp on, respectively, A} and on the bare coupling go. We are interested in the momentum-
dependence, which the running strong-coupling g acquires by means of the renormalization
procedure.
Plugging decomposition (94) into Eq. (93), we have
1 4 a ,a a .a abe(Rb | bY(RC 4 c
vl K [0,(B;, + ay) = 0,(By, + ag,) + [*(By, + a;,) (B + a;,)] x
X [0,(Bg + al) — 8,(Bj +all) + f“de(Bd +a )(Be +ap)] .

In terms of the adjoint covariant derivative,
(Dua,)* = duaf + [ Blac, (95)

this expression can be written as

S() = —= X
493

X / d*z [(Duay, — Dyay)* + Fo [B] + f*a,a] [(Dua, — Dya,)* + Fi [B] + f*“ajal] =
d'z {(F%,[B))* + [(Duay — Dya,)") + 2F%[B] - [(Dya, — Dya,)® + f*aal] +
O(lag )} - (96)

From now on, we denote for simplicity F}, [B] as F - Owing to the antisymmetry of this

tensor, the term ﬁ [ d*xF},(Dya, — Dya,)® on the right-hand side of Eq. (96) can be

490

written as
1 4 a a 1 4 a a 1 4 a abc Rb ¢
d'zF;,(Dya, — Dya,)" = — | d°zF;,(Dya,)" = — | dxF;,(Oua; + f*°B,ay,).
290 90 9%
Integrating further by parts, and changing the order of indices in f%¢, we continue this chain
of equalities by writing
1 1
d4atF“ ,(Dpa,)" = — /d%af,(—é“@u — be“BZ)FgV = ——2/d4:mff(DuFW)“. (97)
90 90 90
Thus, we have just confirmed the known mnemonic rule of the validity of integration
by parts for the (adjoint) covariant derivative. Using this rule, we have for the term

iz J 'z [(Dua, — Dya,)?)” in Eq. (96):

dr [(DMCL,, D CLM = —/d41‘{ D CLV D aV) (Dyau)a} LI

4g0 295
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a ac Cl a ac Ci 1 a ac Cl ac Ci
[ d'a [arp DR +aspy DR = 5 [ et [0, DEDR + DDl (8)

We fix now the so-called background Feynman gauge (D,a,)* = 0, that amounts to including

to the action the following gauge-fixing term:

1 4 a2 1 4. a myac cb b
2—.98 d*z [(Dﬂaﬂ) ] = —2—.98 d ZE'CLVDV DN CLM.

Adding it to the term ﬁ [ d*zal D3 Dal, on the right-hand side of Eq. (98), we have

1 d4 a Dachb Dachb b __

2—93 xra, ( p v e ) Ay =

1 a aoc C
2—gg/d4xau (—2f b F/w) az =

4,..a abc b c
= 2—93 d'raj, (—2f FW) as, (99)
where at the last step we have renamed the indices as b < ¢, u « v. Equations (97)-(99)

yield for the bare action (96) the following expression:

1 a a a a ac aoc C a
Sy = — /d4:c {(FW)Q —4a%(D,F)" — 2a, (6,0 (D) + 2f F[jy] al + (’)(|au\3)} .

g
(100)
Before doing the integration over aj’s, we use the expression for the SU(NV)-generators in
the adjoint representation, (#°)% = —if%, yielding f®¢ = —i(t*)%, to write the covariant
derivative (95) as (Dya,)* = dyag — i(t*)*Bbag, or in short D, = 8, — iBgt*. Using this

formula, we have for the square of the covariant derivative, acting on some function f(z):
Dif = (0, —iB;t") (0, — iBth)f =0*f — i(0,B)t" f — 2Bt 0, f — BZBZt“tbf,
or simply
—Di = 0%+ it"(0,B, +2B0,) + (Bgt“)2 = -0+ fi(z) + fa(z).

We proceed now to the integration over ay’s, starting with the following contribution to
the one-loop effective action:

1
Sp=2- St In(—2D7%). (101)

Here, the overall factor of 2 is due to the number of physical polarizations of the a;-gluons,
while the factor of 2 inside the logarithm yields just an inessential additive constant. We

have

%tr In(—D?) = const + %tr In[1+ (=*)""(fi + f2)]



64

where “const” is again some inessential additive constant. Taylor expansion of the logarithm

in this formula yields in the one-loop approximation under study:
1 2\—1 1 2\—1 2\—1

The first and the second terms in the brackets describe respectively a tadpole diagram and a
one-loop diagram. Both these diagrams have two external lines of the Bjj-field (and the af-
field propagating inside the loops). Fourier-transforming the Bj-field and the aj;-propagator

as

d*p . diq eit@=y)
Bo() — e, () = [
u(x) /(27T)4e u(p)u ( 0 ):cy (271_)4 q2 )

we have for the contribution of the tadpole diagram:
diq 1 B
2m)iq®

tr [(—82);3]”2@)] = tr (t") - /d4xBZ(x)BZ(x)/

d*q d*p 1
= tr (t"t") - B%(p)BY(—p)—-

(00) - [ G B Bl
For simplicity, we denote the Fourier image Bjj(p) in the same way as the field Byjj(z) itself,

distinguishing the two by their arguments. Furthermore, using the cyclic permutation under

the trace, we can write the contribution of the other one-loop diagram as

—% tr [f1(2)(=0%) oy f1(y)(=07),] = %tr (t°t") - / dad’y / 5754 <i§4 -

etp(z—=y)

a a T . b b Y eiq(y—:v)
x{[(auBmmBu(x)au} i }{[(aVB,,@))wB,,(y)a,,} i } (102)

One can further use the Fourier transforms,

. . o erE=y) 'k s . ~_eplz—y)
(0u33()) + 2B(0)35] 5 = [ e Bk ik + 2im)

and (y—=) (y—=)
eiq y—T d4t ; . . eiq y—T

(O.B5) + 28] o = [ e Bl it + 2ia)

to integrate over d*z and d*y:

[ et — nyisp—g) [ @ty - @t +g )

This yields for Eq. (102):
_1 (t*4%) x
5t
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x/ TG ity B BY (1) + 2p)(t 1 20)0 (K 1 p— )6t — p+q) ——

Integration over d*q leads to ¢ = k +p and §(t — p+ q) = 6(t + k). Further integration over
d*t yields t = —k and t + 2q = k + 2p. Accordingly, Eq. (102) takes the form

1o ap 'k d'p e e g (B4 2p)u(k + 2p),
) | G BB R R

Renaming the momenta as p — ¢ and k — p, we finally obtain for Eq. (102):

Lo d'q d'p a0 29)u(p +29),
_§tr(tt)'/(27f)4 (2m) x(P)B(=p) Elp+aq?

The sum of the tadpole and the other one-loop diagram reads

4

50 [(COA) ~ PR ] =) [ B BB

X
2

(2m)t @ 2 @lg+p)?

Owing to the conservation of the electric current in massless scalar QED, the polarization

1/ d'q [W' 11 (2q+p)u(2q+p>u]. (103)

operator represented by the g-integral should obey the condition

/d4q s oL L (2a+p)u@atp)] _
S e R R VRN |

This condition fixes the tensor structure of the ¢-integral:

1 [ d 11 (20+p)ug+p)
5/@{‘“’ ¢ 2 ¢*(q +p)? ]

= (p25uu - pupu)ﬁ(p2)' (104)

The scalar function I1(p?) defined by this equation can be found by contracting the indices
and expanding the integral up to the terms quadratic in p,. Contracting the indices, we

have

1/ dq , 1 p*+4qp+ 44
(

3p*II(p?) = =
=5 | el 2 1+24r

Furthermore, Taylor expansion of the square bracket in this formula in p, yields

1 p* +4gp + 47 1 2¢p  p* | Algp)?
4% — = - ~ 4¢P — —(PP+4qp+ 4¢3 |1 - =2 -+ ~
2 1+ 3 ) ¢ ¢l
1 8(qp)? 16(gp)?
~ 4¢* — 3 [pz + 4qp + 4¢* — (q2) — 8qp — 4p® + (q2 ) :
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The ¢*-terms in this expression produce an inessential additive p,-independent constant,

and the terms linear in g, yield 0 upon the integration. The remaining terms, %pz — 4(‘;—5)2,
yield
- 1 d'q 8(ap)* g 1 [dq 8 (qp)?
321—[2:_/732_ = H2:— i I ¢ v
P00 = 1 [ g (9~ LR Vi R R

We recall now that ¢, is the momentum of the af-gluons, which propagate over the loop
of the polarization operator, while p, is the momentum of the Bj-gluons, which interact
with the polarization operator by means of two external lines. Therefore, the g,-integration
extends in the range [p| < |¢| < Ao, where Aq is a bare ultraviolet cut-off. For the two

q.-integrals entering I1(p?) we have

d* A A2 d* Y O A2
ﬁ:%ﬁlnﬁ:ﬂzln—g and ﬁq”g I%'ﬂ'zll’l—g.
q p p q q p

Therefore, we obtain

7 1 2\ . A2 1 . A2
2\ 0 _ 0
") = 512 (1 N §) b = oo M e

Plugging this expression into Eq. (104) and further into Eq. (103), we obtain for the corre-

sponding contribution to the one-loop effective action, Eq. (101), the following result:

asb d'p L, b 2 1 A3
Sp=2- tr(t*°) - (27T)4Bﬂ(p)Bl,(—p) (p* 0 — Pupy) - 1992 In—. (105)

2
Consider now the linear (i.e. Abelian) part of the field-strength tensor in the momentum

representation:
Foi™(p) = / d'ze™""(9, B, (x) — 9, B, (x)] = / d'ze™""[ip, By (x) — ip, By (w)],

where at the last step we have integrated by parts. The product of two such linear contri-

butions to the field-strength tensor reads
Fi ™ (p) ™ (—p) = / d*xdye™ " P [ip, By (x) — ip, By (x)]|[—ip, By (y) + ip, B} (y)] =

= p*BS(p) BY(—p) — pupy B (p) Bh(—p) — pupy Bl (p) By(—p) + p* Bi(p) B)(—p).

Renaming the indices p <> v in the term —pup,,ij(p)BZ(—p), we get

Fom (p) FY ™ (—p) = 2(p*6, — pupn) Bi(p) B (—p).
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In the one-loop approximation under study, it is legitimate to use this expression in Eq. (105).
Beyond this approximation, one should promote Fﬁ,,(hn) (p) to the full non-Abelian field-
strength tensor. In fact, it can be shown that the cubic, ~ (BZ)?’, and the quartic, ~ (35)4,
terms in Fj, are recovered correctly, so that the full renormalized action remains gauge-
invariant to every given order of perturbation theory. Therefore, implying the one-loop ap-
proximation, we can substitute B (p) BY(—p)- (0?0 —pupy) in Eq. (105) by $F5, (p)Fp,(—p).
Noticing also that
tr (1) = N§™,

we can write

d4p a a 1 A2 1 d4p a a ia
SI = N/ WFuu(p)Fuu(_p) ’ W lnp_g = 1 / WFMV(p)FMV(_p) ’ Hd (p2)a (106)
where
. N A2
Hdla 2) 1 _0
) = g=ln e

The superscript “dia” is because this contribution to the vacuum polarization comes from
the term ~ af%(D3)*as in Eq. (100), which describes the Landau diamagnetic interaction
of the Bj-field with the orbital motion of the aj-gluons. This interaction is present in the
Abelian case as well, and leads to the screening of a test (color) charge in the vacuum.

A specific property of non-Abelian theories, distinguishing them from the Abelian ones,
is that they additionally possess the Pauli paramagnetic interaction of the Bjj-field with the
spin of the aj-gluons. Being opposite in sign to the diamagnetic interaction, the param-
agnetic one turns out to be stronger, that leads to the antiscreening of a test color charge
in the non-Abelian Yang-Mills vacuum. We will now demonstrate this statement quantita-
tively, by calculating the paramagnetic contribution to the one-loop effective action. This

contribution stems from the term ~ a% f**°F} af in Eq. (100), and reads

1

St = gt In 14 (=0%) (2 FL)] & — (-0 (2™ FL () (~0), (2 i (),

where at the last step we have used the one-loop approximation. Since fo€fedc = N§¥ this

expression can be written as
dp  diq ey gialy—x)
Siu=—N [ dzd*yF® (x)F° /
II / ra'y /W(SL’) uu(y) (27’(’)4 (27’(’)4 P

Fourier transforming the product of the field-strength tensors as

a a . d4k d4t ikz+ity rha a
FL@FL) = [ G L BP0,

2 2

q
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we integrate over dixr and d*y:

/d%e”(k“’_@ = 27)*(k +p—q), /d4yeiy(t+q_p) = (2m)*(t +q—p)

This yields

d* d
N/ p d d4kd4thy(k)F§V(t)5(k +p—q)o(t+q— p)p2—q2

Further integration over d4q yields ¢ = k+p, and integration over d*t yields t = p—q = —k

so that
d'k d'p 1
S = — F! (kFS (=k)—————.
1= [ G B OB
Renaming the momenta k — p, p — ¢, we arrive at the expression similar to Eq. (106)
dp dq 1
—N — .
=N [ GO [

Furthermore, within the approximation where one is interested in the leading logarithmic

contribution to the vacuum polarization, it is possible to neglect the momentum p, of the

Bf-gluons compared to the momentum g, of the af-gluons in (g + p)
1 A2

/ dq 1 N/ d*q L——ln—
@2m)tq*(q+p)* — ) (2m)tlglt 1672 p*’

Therefore, the paramagnetic contribution to the one-loop effective action reads

1 d4 a para/, 2
SII:Z/(27T)4F;W( )F (=p) - 1P (p7),

(107)

where
Equations (106) and (107), along with the bare Lagrangian —O(F @ )2 vield the following

renormalized one-loop effective action:

] ) |+ T 4 ) -

(2m)4~ pv
1 d*p 1 N [1 A2
=— | —F'(p)F'(-p)  |5+-—|—=—-1)In—
e [ (5 ) )

The fact that the absolute value of the paramagnetic contribution to the one-loop vacuum

Sl—loop = Z

polarization is 12 times larger than the diamagnetic contribution leads to the antiscreening
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of a test color charge and to the asymptotic freedom of the running strong coupling g(p).

To obtain the latter, we write the effective action as

1 dp 1 "
Sl—loop - Z/ (277')4 92(]9) F,ul/(p)Fuu(_p)a

where

1 1 b . A2 11
— = - In —2 d b=—"N. 1
P R UL 3 (108)

Note that, in this formula, the bare coupling g is just the running coupling g(p) defined at

the bare cut-off Ay, i.e. go = g(Ag). One can also define the renormalized cut-off A related

2
A =Agexp (—8i) )

bg?

[Note the following correspondence of this formula with Eq. (90) of 2D nonlinear O(N)

to the bare one as

sigma-model: Mg vy — Alyy, Aoy = Aolyy:] Thus, substituting to Eq. (108)

(1)

PP by
one has
1 1 b | A% 1672 b | A? 1
- = n—+-— | =— n— — —.
g*(p) g5 167\ p* - bgg 167> p*> g5
Defining a,(p) = 91(75’), we arrive at the known result [14]:
4m
as(p) = :
W= v

[Note again the following correspondence with Eq. (91) of 2D nonlinear O(N) sigma-model:
Alovy = [plym] The Yang-Mills S-function 8(g) = \p|% can readily be obtained by

differentiating the formula

A
g(p) = T
\/ 2b ln A
that yields
1 1
Blg)=—5-90) —
ln N
Noticing that
1 2b

—_— —_— 2
Wil (a7
we arrive at the one-loop Yang-Mills g-function

b 3
5(9):—W'9-

It can be compared with the S-function of 2D nonlinear O(N) sigma-model, Eq. (92).
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Fujikawa’s derivation of chiral (Adler-Bell-Jackiw) anomaly in QED.
Consider the Euclidean action of QED,
S[A,, b, 4] = /d4:): EF@ i (f) v m) w} ,

where D, = 0, —teA,, is the covariant derivative, D= v,D,., and ¥ = 1T,. The Euclidean
v-matrices satisfy the anticommutation relation 7,7, + 7,7, = 20, 11x4, and the matrix v;

reads v5 = v1727¥3V4. The local chiral transformation is defined as

W' (x) = M D(a), P (@) = Pla)e’ @, (109)

where a(x) = « is the parameter of the transformation. Consider the variation of the action

under an infinitesimal chiral transformation dv¢ = iays1, 69 = iatys. The variation of

2

the mass term of the electron reads 0(1y)) ~ 2iapyse), where “~” means “disregarding the

O(a?)-terms”. The variation of the kinetic term has the form

0 <1Zf7¢) = (1 + iOé’Y5)D(1 +iavys)Y — TED¢ ~ 1 [041275151# + IED(OK%ID) :
This expression can be simplified by noticing that

D(ayst) = (9 —ied) (arsw) = =35 (9 — ied) (av) = =) = 350D,
Anticommuting 7, with 75 in the term —m:,(éa)@b, we obtain

6 (DY) = (9ua) - iyyst = (D) - T,
where J/f‘ = iﬁ%%w is the axial current. Thus, the variation of the action reads
§S[AL, ¥, Y] = /d4:c [(0,c) - Jf + 2imonpys] - (110)

Integrating in the first term on the right-hand side by parts, we conclude that the invariance
of the action under chiral transformations, expressed by the equation 6S = 0, leads to the

following formula for the divergence of the axial current:
ATt = 2imirysp.

Therefore, in the massless case, the axial current is conserved on the classical level, i.e.

@LJ/;“ =0 for m =0.
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Let us now consider the change of the Euclidean path-integral measure under the chiral

transformation, Eq. (109). It reads
DYDY = DYDY’ - det [e**55(z —y)]

where the determinant is just the Jacobian of the chiral transformation. Since 1 and v in
the path integral are Grassmann variables, the determinant appears to the power +1, rather
than -1 (as it would be the case for bosonic integration variables). The determinant is taken
over the spinor indices and over the continuous space-time coordinates x and y. Following
the method of Ref. [15], one can furthermore regularize the é-function in the formula above,
by expanding v(x) and (z) over a complete set {¢,(z)} of orthonormal functions. The

property of orthonormality means
[ 61 @100 (0) = b1n”, (1)
where ¢ and j are spinor indices. The expansions have the form
=Y (@) and ()= cdl(

n=1 n=1
where ¢! and ¢ are Grassmann variables, and in the both formulae no summation over i is
implied. The corresponding path-integral measure reads [cf. the quantum-mechanical case,
Eq. (5), and the text preceding it]

DDy = [[[] de. - T] 1 deh-

n=1 1 m=1 j

The regularization of the measure implies a restriction to a large, but finite, set of basis

functions ¢,,. The regularized measure is accordingly defined as

(D) g( DwR_HHdc HHchn, where N > 1.

n=1 1 m=1 j
It changes under the chiral transformation as
(DY) (DY) = (DY) a(DY ) - det { / d'ag} ! (2) (%) 6], ()
g
In particular, for an infinitesimal chiral transformation, i.e. & — 0, the determinant can be

expanded up to the term linear in o as

det -] ~ 1+2zz:/al4:rcz5T )50 (),

kJ
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where “1” on the right-hand side is due to the orthonormality of ¢,’s, Eq. (111).
Let us consider for a while the unregularized case, by taking the (N — oo)-limit. In that

case, the orthonormal functions ¢, (x) satisfy the completeness relation

Z¢’ )i (y) = 676 (x — y), (112)

that yields

In det [ / diah () (eXelrm )™ cbi'n(x)} — trIn

k.j

1_|_2ZZ/d4$CZST )50 ()| =

—In [1+2¢5(0)-sp%. / d%oz(x)} . 2i5(0) - spys - / dza(z) at  a(z)—0, (113)

where “sp” denotes the trace over the spinor indices. Since spys = 0, while §(0) = oo,
Eq. (113) represents an uncertainty of the form oo - 0. The regularization, which we are now
returning to, is intended to remove this uncertainty.

Specifically, the infinity produced by §(z — y) in Eq. (112) can be removed by assuming
that the completeness relation is changed in the regularized case as

N

S i (@)l (y) = RY(x,y).

n=1
The right-hand side of this formula is the (i, j)-element of some matrix-valued operator R,

which can be chosen, e.g., in the form

1
R=—— 114
D) (114)

where 1 = 1444, and 1/a is the ultraviolet cut-off. Other possible forms of the regularizing

operator are R = er*D? , R = etc. The regularization is removed in the (a — 0)-limit,

1+ D’
where R(z,y) — 1-d(x —y). Upon the calculation of the divergence of the axial current,
we will formulate the condition, which should be obeyed by the operator R, in order for the
result to be independent of the particular functional form of R. It will be shown that the

above-given examples of the regularizing operator satisfy that condition.

The partition function associated with the integration over the fermionic fields,

= /prwe—s[z“wﬁw},
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changes under the chiral transformation to
Z'[A)] = / D' Dy e~ S1Auwd W H+SI4w 0]

Here, the variation of the action is given by Eq. (110), i.e. in the massless case of interest
6S = — [d*za-0, Jf, while the change of the integration measure is given by the regularized

version of Eq. (113), that is

exp {m‘ / d'za(z) - sp [v5 - Rl x)]} .

Chiral invariance on the quantum level is imposed by the condition Z'[A,] = Z[A,], which

thus reads
—08 = /d%a(z) -0MJ/14 = 22’/d4:£a(:£) -sp [75 - Rz, z)]. (115)

We will calculate sp [y5 - R(x, z)] by choosing the regularizing operator in the form (114).
To this end, we use the fact that

1

1
Yu Vv = 5(’7#71/ + VoV T VY — 71/%) = 5;w + 5[’7}17 71/]7

to represent D? as

A 1
D? =D+ 5 W DDy

Furthermore, the product D,D, can also be written as a sum of a symmetric and an anti-

symmetric terms,
1
D,D, = §(DMD,, +D,D, +[D,,D,]),

so that, upon the multiplication by [7,,7,], only the antisymmetric term contributes:

A 1
D? = Di + Z[%“%j][DW D,].

The commutator [D,,, D, | reads
D,,D,) = (0, —ieA,)(0, —ieA,) — (0, —ieA,)(0, —ieA,) =

= —ie((0,A)) + A,0,) — ieA,0, + ie((0,A,) + Au0,) + ieA, 0, = —iek),,
that leads to the expression of the form [cf. the non-Abelian case after Eq. (47)]
e

D* =D — Z[%,%]FW = D>+

e 1
§EWFW= where ZWE%[%,%].
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Plugging it into Eq. (114), and expanding the result in e, we obtain the following leading,
order-O(e?), contribution to the right-hand side of Eq. (115):

1

@ (116)

2ia4/d4xa(1’) ‘R (gF/w> R, (gFAp) Sp (152w E,), where Ry =

The trace sp (752,,2),) in this formula should be proportional to €,,,,, that is the only
tensor in 4D space with the appropriate transformation properties. Thus, sp (752,,X5,) =
C - €unp, Where the constant ¢ can be found by fixing p =1, v =2, A = 3, p = 4. Given the

definition of ¥,,, this yields

Iz

c= —i sp (Vs[71, 2] (3, V4l) -

Noting that —vy,y1 = Y172, so that [y1,72] = 29172, and similarly [y3,74] = 27374, We can

further write ¢ = —sp (15717277374). Due to the explicit form of the matrix s, one has

¢ = —=sp (M2 Y3 V2V374) -

Next, anticommuting the second of the two matrices v; in this formula to the left, up
to the first matrix 7, and using the fact that V;ZL = 1 for any p = 1,2,3,4, we have
¢ = sp (Y273747Y2Y374)- In the same way, we can anticommute to the left the second of the two
matrices 7, up to the first matrix o, that yields ¢ = sp (v3747374). Finally, anticommuting

the matrices v4 and 3, we obtain ¢ = —sp1 = —4. Thus,
sp (752;1112)\;)) = _45;w>\p7
and Eq. (116) takes the form

—2ie2a45w,,\p / d*za(x) - RoF, Ry, =

= —4ie2a4/d4xa(:c)/d4yd4zR0(x,y)FH,,(y)Ro(y,Z)Fw(z)RO(z,x),

where

1 ~
Ro(x,y) = (m) and F;U'V =
zy

We notice that this integral can be viewed as a triangular diagram, with Ry’s playing the

c":‘w,)\pF)\p.

N~

role of the propagators. It can most easily be calculated in the momentum representation,
by substituting

d4q eiq(w—y) d4p eip(y—z) dir eir(z—m)
0(x7y> / (27’(’)4 1 —|—CL2q2’ O(yvz) / (27’(’)4 1 —|—CL2p2’ O(Zv$) / (271_)4 1 +CL2T27
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that yields

dAqdipdir eilr(g—r)+y(p—q)+2z(r—p) -
—die%a* | d* d d4/ Fou(y) Fu ().
e / za(e / Y 22 (14 a2@®)(1+ a2p?)(1 + a?r?) o (9) Fpu(2)
(117)

Integrating over d*y and d*z, we have

/d4yFuV(y)eiy(p_q) = Fu,,(q —p), /d4zﬁ’uV(z)eiz(T—p) = Fw/(p —-7),

where, to simplify notations, we denote the field-strength tensor and its Fourier image by the
same symbol. One can introduce, instead of p and r, new momenta ¢t =q¢—pand k = q—r.

Equation (117) takes then the form
d*k d*t ~
—4i 2 4 4 / ka/ F . F . o
ie‘a /d za(r) —(27T)4e 2yt (t)Fu(k —1t)x

X / (271')4 (1 + a2q2)[1 + a2(q _ t)2][1 + Clz(q — ]{2)2] (118)

We should now seek the lowest-in-a term of this expression, which is expected to remain

finite in the (a — 0)-limit. To this end, one changes the momentum ¢ to the rescaled one,

w = aq, in terms of which
d*q = 2r%¢dq = 2dw and a®(q—t)? ~a*(q — k)* ~ w2
Equation (118) then reads

. 9 4 4 [e.e] 2 2
il [ dkim/dt e — / widw”
ys d xoz(x)/ (27?)46 (27T)4Fuy(t>Fﬂl/(k t) e

i€’ 4 'k e ﬂ 2 _
= 5.3 dma(m)/we /(27T)4Fw,(t)FW(k t). (119)

Introducing, instead of k£, a new momentum \ = k — ¢, we further have

d4k ikx T d4)\ i T 717 it 1
/(2ﬂ)4ek Fu(k—1) = / (27T)4e(>\+t) Fu(X) = " F (),

where we continue distinguishing the field-strength from its Fourier image, by writing ex-

plicitly the corresponding argument. The d*t-integration now yields

| G Fult) = Fuo)

and thus Eq. (119) takes the following simple form:
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Finally, this expression, once plugged into Eq. (115), yields the following divergence of the

axial current:
ie? -
_@FWFW. (120)

The obtained right-hand side of Eq. (120) does not depend on a, thus remaining finite in

Ot =

the (e — 0)-limit. Instead, higher-in-e contributions are proportional to higher powers
of a, and therefore vanish at a — 0. Equation (120), called chiral or Adler-Bell-Jackiw
anomaly [16], was originally obtained by using the diagrammatic approach. Here, we have
followed Ref. [15] to show that the anomaly stems from the non-invariance of the measure
in the path integral under chiral transformations. This is a general situation, which holds
for all known anomalies in quantum field theory, e.g. for the so-called conformal or scale
anomaly in the v.e.v. of the trace of the energy-momentum tensor. Namely, a quantum
anomaly appears when the action of a theory respects a certain symmetry (i.e. the theory
is invariant under the corresponding symmetry-transformations on the classical level), but
the integration measure in the path integral is not invariant under these transformations.
We note also that every anomaly is expressed by an equality, which, from the mathematical
viewpoint, holds in the weak sense. For instance, Eq. (120) holds in the sense of Eq. (115), i.e.
when the divergence of the corresponding current is integrated, together with some function
a(z), over d*z. In general, such a function, as well as the d*z-integration in Eq. (115), can
be promoted respectively to a gauge-invariant functional of the fields and to an average over
some gauge-invariant state.

Finally, one can illustrate that the obtained Eq. (120) is independent of a particular
form of the regularizing operator R. For this purpose, denoting the Fourier image of Ry as
Ro(p) = r(a®p?), one notices that the integral [;° % in Eq. (119) is, up to a constant
multiplicative factor, equal to [ w?dw? - r”(w?). Integrating in this formula by parts, one
concludes that, for any function r(w?) such that 7(oco) = 0, this integral is equal to r(0).
Thus, for any regularizing operator R, such that Ry(p — oo) — 0 and Ry(p = 0) = 1, the

result obtained, Eq. (120), is independent of a particular functional form of R.
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