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PART   1 
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LHC
• pp machine (mainly):

s = 14 TeV       7 times higher than

                          present highest  energy

                      machine (Tevatron/Fermilab:
                           2 TeV)

  → search for new massive particles up to m ~ 5 TeV

   ~ 102 larger than LEP2, Tevatron 

 → search for rare processes with small σ   (N = Lσ )

•  under construction,   ready  2007

•  will be installed in the existing LEP tunnel

•  two phases:

2007 - 2009 :  L ~ 1033 cm-2 s-1   ,  ∫ Ldt ≈ 10 fb-1   (1 year)
 “low luminosity”

2009 - 20xx :  L ~ 1034 cm-2 s-1  ,   ∫ Ldt ≈ 100 fb-1  (1 year)
“high luminosity”

 = 1034 cm-2 s-1

yx 

N  N
  L 21∝
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Four large-scale experiments:

ATLAS

CMS 

general-purpose pp
experiments

LHCb                  pp experiment dedicated
                                  to b-quark physics and CP-

                                  violation.  L=1032 cm-2 s-1

                            

ALICE             heavy-ion experiment (Pb-Pb collisions)
                              at 5.5 TeV/nucleon → √s ≅ 1000 TeV
                              Quark-gluon plasma studies. 
                               L=1027 cm-2 s-1

                         

Here : ATLAS and CMS 
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A few machine parameters

Limiting factor for √s : bending power needed to fit ring 
 in 27 km circumference LEP tunnel:

     p (TeV) = 0.3 B(T) R(km)

     = 7 TeV                    = 4.3 km        

LHC :   B=8.4 T : ~ 1300 superconducting dipoles
working at 1.9 K (biggest  cryogenic system in the world)
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LHC is unprecedented machine in terms of:

• Energy  

• Luminosity 

• Cost   :  ≈ 4000 MCHF  (machine + experiments)

• Size/complexity of experiments : 
   ~ 1.3-2 times bigger than present collider experiments
   ~ 10 times more complex

• Human resources : > 4000 physicists in the 
                                           experiments

WHY  ? 
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Motivations for LHC 

Motivation 1 : Origin of particle masses

  Standard Model of electroweak interactions
  verified with precision 10-3 - 10-4   by LEP
   measurements at  √s ≥ mZ and  Tevatron at 
   √s = 1.8 TeV.
            
                    discovery of top quark in ‘94,
                         mtop ≅ 174 GeV 

However: origin of particle masses not known. 
Ex. : mγ = 0

mW, Z  ≈ 100 GeV ?
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SM : Higgs mechanism gives mass to particles
         (Electroweak Symmetry Breaking)

f

f

H

~ mf

mH < 1 TeV   from theory
For mH ∼ 1 TeV  ΓH > mH  and 

WW scattering violates unitarity   

However: 
-- Higgs not found yet: only missing (but 
   essential) piece  of  SM
-- present limit : mH > 114.1 GeV (from LEP)
-- “hint”  at  LEP  for mH ≈ 115 GeV 
--  Tevatron may go beyond (depending on L)
    ⇒   need a machine to discover/exclude
           Higgs from ≈ 120 GeV to 1 TeV
                              

LHC
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Motivation 2  :  Is SM the “ultimate theory” ?

• Higgs mechanism is weakest part of the SM:
   -- “ad hoc” mechanism, little physical justification
   --  due to radiative corrections

         ∆mH
2 ~ Λ2                      Λ : energy scale

                                                    up to which SM
                                                    is valid (can be very large).

     ⇒  radiative corrections can be very large (“unnatural”)
           and Higgs mass can diverge unless “fine-tuned”
           cancellations → “ bad behaviour ” of the theory

•  Hints that  forces  could unify at  E ~ 1016  GeV

H H

E (GeV)

   Running of couplings
   proven experimentally

  GUT: for E > 1016 GeV
  physics become simple
  (one force with strength αG)

α1=αEM ≈1/128
α2=αWEAK ≈ 0.03
α2=αS ≈ 0.12

√s ~ 100
   GeV
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• SM is probably low-energy approximation of
  a more general theory 
 
• Need a high-energy machine to look for 
   manifestations of this theory

• e.g. Supersymmetry     :     mSUSY ~ TeV
  Many other theories predict New Physics at
  the TeV scale

  LHC  
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Motivation 3  : Many other open questions

•  Are quarks and leptons really elementary ?
•  Why 3 fermion families ?
•  Are there additional families of (heavy) quarks and
     leptons ?
•  Are there additional gauge bosons ?
•  What is the origin of matter-antimatter asymmetry in the
     universe ?
•   Can quarks and gluons be deconfined in a quark-gluon
    plasma as in early stage of universe ?
•  ….  etc.   …...

Motivation 4 : The  most fascinating one …
Unexpected physics     ?

Motivation 5 : Precise measurements

Two ways to find new physics:

       -- discover new particles/phenomena

             -- measure properties of known particles
                 as precisely as possible ⇒ find deviations
                 from SM
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LHC: known particles (W, Z, b, top, …)
produced with enormous rates thanks to
high energy (→ high σ) and L (→ high rate)

Ex. :      5 X 108    W → lν
               5 X 107    Z  → ll               per year at low L

               107              pairs
               1012             pairs

→ many precision measurements possible
     thanks to large statistics  (stat. error ~  1/√ N)
     → error dominated by systematics

Note : measurements of  Z parameters performed 
          at  LEP and SLD, however precision can be 
          improved  for :
             -- W physics
             -- Triple Gauge Couplings  WWγ, WWZ
             -- b-quark physics 
             -- top-quark physics 

 

tt
bb
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Phenomenology of pp collisions 

p

θ pT

Transverse momentum (in the plane perpendicular
to the beam) :

pT = p sinθ

Rapidity: 
) (tg log-  2= θ = 90o    →  η = 0

θ = 10o    →  η ≅ 2.4
θ = 170o  →  η ≅ -2.4

Total inelastic cross-section:  
      σtot (pp) = 70 mb        √s = 14 TeV 

 = L x σtot (pp) = 109 interactions/s

These include two classes of interactions.  

Rate =
n. events
second

1034 cm-2 s-1
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Class 1: 

Most interactions due to collisions at large
distance between incoming protons where protons
interact as “ a whole ” → small momentum
transfer (∆p ≈ h /∆x ) → particles in final state

have large longitudinal momentum but small 
transverse momentum (scattering at large angle is
small) 

< pT > ≈ 500 MeV      of charged particles in final state

7  ∪d
dN  charged particles uniformly

 distributed in φ

Most energy escapes down the beam pipe.

These are called minimum-bias events (“ soft “ events).
They are the large majority but are not very interesting. 
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Class 2:

Monochromatic proton beam can be seen as
beam of quarks and gluons with a wide band
of energy.  Occasionally hard scattering (“ head on”)
between constituents of incoming protons occurs. 

Interactions at small distance → large
momentum transfer → massive particles and/or
particles at  large angle are produced. 

ŝx1p x2p

p ≡ momentum of incoming
protons = 7 TeV

These are interesting physics events but they are rare.

Ex.         u +    → W+

σ (pp → W) ≈ 150 nb ≈ 10-6 σtot (pp) 

d

u
W+

d
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Unlike at e+e- colliders 

•  effective centre-of-mass energy             smaller
   than √s of colliding beams: 

ŝ

Aaa p  x p
rr =

Bbb p  x p
rr =

pA= pB= 7 TeV s xsxx  ŝ ba ∪=

→  to produce m ≈  100 GeV    x ~ 0.01
     to produce m ≈      5 TeV     x ~ 0.35

if xa ≈ xb 
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•  cross-section : 

� �=
ba,

baab
2

bb
2

aaba ) x,(x ˆ )Q ,(x f )Q ,(x f dx dx  

abˆ ≡ hard scattering cross-section

fi (x, Q2) ≡  parton distribution function

p ≡ uud
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Two main difficulties

•     Typical of LHC:

      R = Lσ = 109 interactions / second
      Protons are grouped in bunches (of  ≈   1011  protons)
      colliding at interaction points every  25 ns 

⇒ At each interaction on average ≈ 25 minimum-bias
     events are produced. These overlap with interesting
     (high pT) physics events, giving rise to so-called

                            pile-up   

 ~1000 charged particles produced over |η| < 2.5 at each crossing.

   However   < pT > ≈ 500 MeV  (particles from minimum-bias).

→  applying pT cut allows extraction of interesting
      particles 

detector

25 ns
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Simulation of CMS inner detector

H → ZZ → 4µ
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Pile-up is one of the most serious experimental difficulty
at LHC

 Large impact on detector design:

• LHC detectors must have fast response, otherwise
  integrate over many bunch crossings → too large pile-up

  Typical response time : 20-50 ns
  →  integrate over 1-2 bunch crossings → pile-up of 
        25-50 minimum bias 
  ⇒  very challenging readout electronics

• LHC detectors must be highly granular to minimise
  probability that pile-up particles be in the same detector
  element as interesting object (e.g. γ from H → γγ decays)
  →  large number of electronic channels
  ⇒  high cost

• LHC detectors must be radiation resistant: high flux
  of particles from pp collisions → high radiation environment
  E.g.    in forward calorimeters:
     
      up to 1017 n / cm2                      in 10 years of LHC operation
      up to  107 Gy

Note : 1 Gy = unit of absorbed energy = 1 Joule/Kg
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Radiation damage :

  
  --  decreases like d2 from the beam → detectors
      nearest to beam pipe are more affected

  -- need also radiation hard electronics (military-type
      technology)

 --  need quality control for every piece of material

 -- detector + electronics must survive 10 years of
     operation
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•  Common to all hadron colliders:
     high-pT events dominated by QCD
     jet production:

• Strong production → large cross-section
• Many diagrams contribute: qq → qq,
  qg → qg, gg → gg, etc. 
• Called “ QCD background “

Most  interesting processes are rare processes:
• involve heavy particles
• have weak cross-sections (e.g. W production)

q

q

g

q

q
jet

jet

αs

αs
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Proton - (anti) proton cross-section

To extract signal over QCD jet background must look at 
decays to photons and leptons → pay a prize in branching ratio

Ex.         BR (W  → jet jet) ≈ 70%
              BR (W  → lν)      ≈ 30%

√s
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ATLAS and CMS detectors

Don’ t know how New Physics will manifest
→ detectors must be able to detect as many particles and  
     signatures as possible:

          e, µ, τ, ν, γ,  jets, b-quarks, ….

    ⇒         “ multi-purpose” experiments. 

• Momentum / charge of tracks and secondary vertices
  (e.g. from b-quark decays) are measured in central tracker.
  Excellent momentum and position resolution required. 
  
• Energy and position of electrons and photons measured
  in electromagnetic calorimeters. Excellent resolution and
  particle identification  required. 

• Energy and position of hadrons and jets measured mainly
  in  hadronic calorimeters. Good coverage  and 
  granularity are required. 

• Muons identified and  momentum measured in external
  muon spectrometer  (+ central tracker). Excellent resolution
  over  ~ 5 GeV < pT < ~ TeV required.

• Neutrinos  “detected and measured”  through measurement 
  of missing transverse energy ET

miss. Calorimeter coverage 
over | η |<5 needed.  
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Detection and measurement of neutrinos

• Neutrinos traverse the detector
  without interacting 
  → not detected directly

• Can be detected and  measured 
   asking:

     P ,E         P ,E iiff

rr
=

total energy, momentum
reconstructed in final state

total energy, momentum
of initial state

--  e+e-  colliders:    Ei = √s, 
    → if a neutrino produced, then  Ef < Ei (→ missing energy) 

          and                  →

0Pi =
r

0Pf ?
r

fP -  P
rr

= |P|  E
r

=

-- hadron colliders: energy and momentum of  initial state 
    (energy and momentum of interacting  partons) not known.

    However:  transverse momentum   0P iT =
r

→ if a neutrino produced                   ( →  missing transverse 
     momentum)  and  

0P fT ?
r

miss
TfTT E  |P| |P| ==

rr
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ATLAS

Length : 40 m 
Radius : 10 m 
Weight : 7000 tons
Electronics channels : 108

A Toroidal Lhc ApparatuS
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CMS

Length : 20 m 
Radius :  7 m 
Weight : 14000 tons
Electronics channels : 108

 Compact Muon Solenoid
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ATLAS solenoid  ready 

ATLAS EM calo module 1 

ATLAS Tilecal 
hadronic calorimeter



Fabiola Gianotti, Physics at LHC, Pisa, April 2002

Assembly  of CMS 

hadronic  calorimeter 

Assembly  of CMS 

barrel magnet  rings 
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• Excellent energy resolution of  EM calorimeters
  for e/γ  and of the tracking devices for µ in 
  order to extract a signal over the backgrounds. 
 

           Example :   H → γγ

H  → γγ good resolution

mγγ

background from
      pp → γγ

H  → γγ bad resolution

… see later ...

Examples of performance requirements
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• Excellent particle identification capability:
          e.g.   e/jet , γ/jet separation

q
jet

q π0
in some cases: one high-pT
π0; all other particles
too soft to be detected

e±

γ

π0

Inner detector EM calo HAD calo

number and pT of hadrons
in a jet have large 

fluctuations 

d (γγ) < 10 mm in calorimeter → QCD jets can
mimic photons. Rare cases, however:

)( ♦H
jj

~ 108 mγγ ~ 100 GeV
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Title:
/u5/zp/gianotti/dice/ana/ntuple/paw.metafile
Creator:
HIGZ Version 1.21/10
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

ATLAS EM calorimeter : 4 mm strips
in first compartment 

⇒ need detector (calorimeter) with fine
      granularity to separate overlapping
      photons from single photons
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• Trigger : much more difficult than at e+e- machines

Interaction rate: ~ 109 events/second
Can record ~ 100 events/second 
                       (event size  ~1 MB)

 ⇒ trigger rejection ~ 107

Trigger decision ≈ µs → larger than interaction

                                                 rate of 25 ns

store massive amount of data in pipelines
while trigger performs calculations

102 evts/s

detector

trash

savePIPELINE
NO

YES

3-level trigger

109 evts/s109 evts/s
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The LHC physics programme

• Search for Standard Model Higgs boson 
  over  ~ 120 < mH < 1000 GeV.

• Search for Supersymmetry and other physics
   beyond the SM (q/l  compositness, leptoquarks,
   W’/Z’, heavy q/l, unpredicted ? ….) up to

    masses of ~ 5 TeV

• Precise measurements :  
      -- W mass
      -- WWγ, WWZ Triple Gauge Couplings
      -- top mass, couplings and decay properties
      -- Higgs mass, spin, couplings (if Higgs found)
      -- B-physics: CP violation, rare decays, B0

          oscillations (ATLAS, CMS, LHCb)
       -- QCD jet cross-section and αs

           

           -- etc. …. 
      
•  Study of phase transition at high density from 
   hadronic matter to plasma of deconfined quarks
   and gluons. Transition plasma → hadronic matter
   happened in universe ~ 10-5 s after Big Bang 
   (ALICE) 
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Keyword: large event statistics

Expected event rates in ATLAS/CMS for 
representative (known and new) physics
processes at low luminosity (L=1033 cm-2 s-1)  

                              0.001             104

   (m=1 TeV)
    
     H                       0.001            104

  (m=0.8 TeV)  

 Process           Events/s    Events/year   Other machines

                       
W→ eν                 15                108                   104 LEP / 107 Tev. 

Z→ ee                 1.5               107                        107  LEP

                            0.8               107                         105  Tevatron  

                           105                       1012                      108 Belle/BaBar

QCD jets            102                         109                   107 
pT > 200 GeV

gg~~

tt

bb

High L : statistics 10 times larger

→ LHC is  a B-factory, top factory, W/Z factory 
Higgs factory, SUSY factory, etc.
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Physics rates are  the strongest point
in favour of LHC. What about weaknesses ? 

 w.r.t.   e+e- machines:
 -- backgrounds (QCD) are much larger
 -- trigger is much more difficult
 -- centre-of-mass energy is not known
      →  less kinematic constraints in
            final state
 -- underlying event and pile-up make final state
     complex
 -- etc. ...

 w.r.t.   Tevatron:
  -- pile-up due to higher L
  -- QCD processes grow faster
       with energy than electroweak processes
       e.g.  e/jet  ~ 10-3     Tevatron         pT> 20 GeV
               e/jet ~ 10-5       LHC
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How can one claim a discovery ? 

Suppose a new narrow particle X → γγ is produced: 

Signal significance : 

B

S

N

N
  =S NS= number of signal events

NB= number of background events
in peak
region

√NB ≡ error on number of background events

   S > 5  : signal is larger than 5 times error on background. 
                    Probability that background fluctuates up by more
                    than 5σ : 10-7 → discovery

peak width due to detector
resolution

mγγ



Fabiola Gianotti, Physics at LHC, Pisa, April 2002

Two critical parameters to maximise S:

• detector resolution: 
  if σm increases by e.g. two, then need to enlarge
  peak region by two. 

→ NB increases by ~ 2 
     (assuming background flat) 

      NS unchanged

⇒ S =NS/√NB
decreases by √2

⇒  S ≈1 /√σm
detector with better resolution
has larger probability to find
a signal

Note: only valid if  Γx << σm. If  new particle

is broad, then  detector resolution is not relevant. 

• integrated luminosity :

NS  ~  L
NB  ~  L

⇒ S ~ √L
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Summary of  Part1 

• LHC:
           pp machine (also Pb-Pb)
           √s = 14 TeV
            L = 1033-1034 cm-2 s-1

                   Start-up : 2007

• Four large-scale experiments:

      ATLAS, CMS            pp multi-purpose
      LHCb                          pp B-physics
      ALICE                        Pb-Pb

• Very broad physics programme thanks to high
  energy and luminosity.  Mass reach : ≤ 5 TeV

     Few examples  in next  lecture ...
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Very difficult environment:

     -- pile-up : ~ 25 soft events produced at each crossing.
                        Overlap with interesting high-pT events. 
     -- large background from QCD processes (jet 
        production): typical of hadron colliders
     
                                   
 
 

 Very challenging, highly-performing and expensive
  detectors:    
    
        -- radiation hard
        -- fast 
        -- granular
        -- excellent energy resolution and particle identification
            capability
        -- complicated trigger

End of Part 1 


