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VI.

Outline of the talk

. Introduction to non-equilibrium many-body quantum

physics

. State of the art: Relaxation, Light-Cone effect,

Entanglement entropy

Extension to a quench in the transverse field Ising chain
with a new ingredient: initial excited states

. Stationary and dynamical behaviour

. Thermodynamic entropies of the stationary state

Conclusions & Outlooks



|. Introduction
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Long-Standing Questions

[Von Neumann '29; Birkhoff '30]

» Does an isolated quantum system reach a stationary state starting from an
arbitrary initial state?

» If so, is there a way to economically describe the stationary state?

» How do correlation functions and observables depend on time?
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What's the simplest way to drive a system out-of-equilibrium?

Sudden quantum quench  H(X) t;()) H(X)
Quench

The Quench paradigm

» prepare a many-body quantum system in an eigenstate |to)
of a pre-quenched hamiltonian H

» from ¢t = 0 let it evolve unitarily with a different
post-quenched time-independent hamiltonian H’

() = e o), [H,H']#0

Initial state is NOT an eigenstate
nor a finite superposition of eigenstates of H’

Evolution from an out-of-equilibrium state |i0) ‘
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[l. State-of-the-art:

6/28



7/28

1. Relaxation

Can the whole system attain stationary behaviour?

Initial pure state + unitary evolution — it will be in a pure state V¢
Global observables (i.e. the whole system) can never relax
As an example, a spin-chain

= = ——@—0—@——0—0—0—0—0—0-0—0—0—0—— -
o1 ON

(¥(t)|o1---on|(t)): persistent oscillations, quantum recurrence

What about local observables?



First taking B infinite, then ¢ — oo a finite subsystem A can relax!

Only local observables relax!

Physical picture: B acts like a “thermal” bath on A
No time averaging involved!

Density matrix:
paus(t) = e o) (vole " B A B

T e

Reduced Density Matrix of A:
pa(t) = Tre [pace(t)]

. . . mixed
fam, Jim palt) = Jim, Tre (A5

> pa stationary and allows for an ensemble description (mixed state)

» determines all local correlation functions
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Which is the statistical ensemble for pm"‘ed?

Non Integrable Systems

_H/T,
Gibbs € 1/ Teft
PAUB

ZGibbs

Thermal ensemble
only one integral of motion E
few info on the whole Initial state

[Deutsch '91; Srednicki '95]

Integrable Systems

- I
AUB = — (5
ZGaGE

Non thermal ensemble
complete set of local commuting
integrals of motions I,,,

I =300 Ogjtt jam,
O(m)-support, m finite
full info on the whole Initial state

[Rigol et al '07; Eisert; Cramer...]

» based on many theoretical, experimental and numerical outcomes

[Rigol, Muramatsu, Olshanii; Cazalilla; Calabrese, Cardy; Fioretto, Mussardo; Caux, Mossel...]

» not quite the end of the story [pe Nardis et al '14, Kormos et al 14, Andrei et al '14]

Main test: exact solution of the full dynamics (free theories, TFIC, XY...) ‘




2. Light-cone spread

Do we really need L — co,t — oo to have relaxation?

Not really, as an example, the thermalization of (o;0;) occurs after t ~ ;’;ﬂ

VUmaz

In(QYY)
20
In non relativistic quantum systems
with finite-range interactions 10
and a finite local Hilbert space: # 0
3 finite group velocity vVsmqa, With
exponentially small effects outside -10
an effective light cone ,
-20

-100 =50 0 50 100
i—j

[Cheneau et al '12]

Is this a general feature? YES — Lieb-Robinson Bound! [Lieb, Robinson '72]
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3. Entanglement entropy

A pure quantum state of a bipartite system
is not necessarily a pure state of each subsystem separately.

B A B
Sa = —Tr[paln pa) -

T~
RN
L]

{ spins
Entanglement entropy is a measure of how much a configuration of the
subsystem A depends on one of B.
» product state: ) = |[¢p)a ® |d)B: Sa =0
» maximally entangled state: |¢)) = ==, |¢1)a @ |¢1) B,

D
In an entangled state the state of A is not a vector but a density matrix.
1

7 )

Entanglement in a quantum coherent system is responsible for appearance of
entropy, hence for thermalization process!

Example: take a qubit in a singlet state

%)

[N
Ni= O

(|T>A®|~L>B_|¢>A®‘T>B), pA:(
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[ll. What we did
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So far, the focus has been put on initial states that are ground states
of local hamiltonians

Objective

Study the time evolution and stationary limit of local observables
after a quench [1 & 2-point functions, entanglement entropy ...]

Starting from an initial excited state

In the Transverse field Ising chain
[solvable but non-trivial as free theories]
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So far, the focus has been put on initial states that are ground states
of local hamiltonians

Objective

Study the time evolution and stationary limit of local observables
after a quench [1 & 2-point functions, entanglement entropy ...]

Starting from an initial excited state
Let's discuss first this point

In the Transverse field Ising chain
[solvable but non-trivial as free theories]



Why should we focus on excited states?

» Radically different behaviour of entanglement entropy for excited states:

ground states:

> massive non degenerate GS: Sas = Ol |  [Bombelli '88;Srendicki '93]

» critical conformal theories: ’ Sas =~ §log(l) + ¢}

[Calabrese Cardy]

higly-excited states (# excitations ~ N)

’ Sexc ~] + (’)(logl)

[Alba, Fagotti, Calabrese, '09; Sierra, ...]

insensitive to the criticality of the ground states

» Look for universal behaviour

» Room for new effects
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Quenched Transverse field Ising chain
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(0loj10) #0 (0]710) =0

N
H(h) = —5 > [ojoj +hoj] + PBC }

1
2j= he=1

|0): ground state of H(h)

From interacting spins o; to free spinless fermions by,

:Zeh(k)(bzbk—l) en(k)=1+hn —2hc05@
2 N
’ Interaction quench h — A’

Initial state: o) = [mi) = [T, (bL)™*|0)

» excited state of pre-quenched hamiltonian H(h)
> Zs-invariant: (10|07 |1ho) =0

» my: fermionic initial occupation number of k-mode



IV. Stationary and dynamical behaviour
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Local relaxation in the TFIC from excited states

B A B , , ,
-- { ) - “A” is a block of ¢ contiguous spins
¢ spins
—iH(h'
pa(t) = Trp (|vo(t)) (Yo (t)]) [()) = e~ ! [y

‘ Result: GGE works even for excited states! ‘

pPGGE,A = pa(00)
Idea:

Free systems — Wick’'s thm — just need to prove it for propagators!

» exactly solvable dynamics

e~ Tk ARk

» ensemble averages PGGE,A = Z

ny: post-quench conserved fermionic occupation number operators



Local conserved charges from excited states

T dk s s
(Ii) = / . cos(nk)ey [1 + my, cos Ak} mp =m_p+myp — 1
_x Ar
_ T dk A )
(I,) = f/ . sin[(n + 1)k]my, mp = m_g —my
g Am

’ Two classes of IS ‘

» mi =0 Only (IF) #0  (GS belongs to this class!)

> mi #0: Both (I;}) and (I,;) # 0

‘ Result: Doubling of non zero VEVs local conserved charges wrt ground state

Does it alter the asymptotic time dependence of correlations?
> transverse magnetization

» longitudinal two-point function
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Transverse magnetization

T dk ; 5 T dk .
4—616’“ my cos Ay —i / ek my sin Ay cos(2¢xt)
T

-7 -7

m*(t) =

stationary part time—dependent

Asymptotic behaviour: stationary phase approximation

m(k) analytic ‘ m(k) non—analytic‘
M)~ O ) mAt) =t O )
AS GROUND STATE NOVELTY!

0.0008¢ (@ 0.0015 (b)

Y |
S oo w w ww 0 WMWMWMW CEEERR T ooom f)v h vﬂw UﬂUnUﬂUﬂUﬂ HnuﬁUﬂUIIUH\}WmﬂﬁﬂUﬂVﬂUn“ﬂHAVAVﬁUn\‘AVnVA\

-0.0002F E —0.0005
~00003] me=(k+my/Am | ~00010

my(K)=0(k—7/2)

10 20 30 40 50 60 10 20 30 40 50 60
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Longitudinal spin-spin function

P (U, ) = (Wo()|0Z ot [Wo(t))

-6 T T T 3
6.x 10 )

k2
m(k) = E§;;5§
¢ =60
h=1/3, h =2/3
tp = Z/(2'Urnanx)
Umax = min[h, 1]

0.0 0‘.5 110 115 2:C
t/te

» Emergent light-cone spreading of correlations (as for GS)

» Common behaviour Vmy analyzed (double-stepfunction, linear,
quadratic)...

...EXCEPT ONE!
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Longitudinal spin-spin function

P (U, ) = (Wo()|0Z ot [Wo(t))

70 )]
5 %10 horizon ] .
-6 F ] m(k) = ———
5 Z'Xiz,e 1=60 &) (2m)?
Q 3% F ] _
2.x10°° t=60
1.x10° h=1/3, W =2/3
. X ]
0 . . . ] tF = Z/(27~1111E:Lx)
0.0 05 1.0 15 20

Umax = min[h, 1]
tte
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The anomalous state: my = 0(k —

0.00020 &

0.00015

-3
%, 0.00010

0.00005

0.00000L, e @

Still open problems

> Is it related to | (I;) #0?

» But other mji # 0 display usual light-cone effect...

vl



V. Thermodynamic entropies of the
stationary state

The system will always be globally in a zero entropy state.

Can we define the entropy for the stationary state
reached a quantum quench?
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Diagonal ensemble Subsystem's stationary ensemble

. 20 — e Mk
po = > |Gil%o) 1?15l pee =~
j z
[Polkovnikov '11]
» represents the long-time limit of
» captures the long time averaged only local observables
expectation value of all observables » its entropy coincides with the
but stationary value of the
» knows everything of the initial entanglement entropy
state!
Diagonal entropy GGE entropy
Sp = —Tr|[pp In pp] Scee = —Tr[pece In pece]

What is the relation between these entropies?
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Initial Ground states

Scee = 25p

» verified in some integrable systems [Gurarie '13, Calabrese 14]

» consequence of the inequivalence of pcge and pp

Initial Excited states

Many different microstates sharing the same macroscopical distribution of
excitations in the thermodynamic limit

mig
mag
—_—> m(p

N — oo )

In the N — oo, averages over microstates need to be introduced.

What are the consequences on Scee and Sp?
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’ Finite Systems: my, = {0, 1}‘

Sp = Z [mkm,k + (1 — mk)(l — m,k)] Sk
k>0

Scee = Z [mem_k + (1 —me)(1 — m_g)]sk
k
only the modes with my = m_j contribute to the entropy!

Scce = 2S5p even for excited states!

From N finite to the thermodynamic limit

my =1

mg 7é m_g Vk
Sace =0 m(p) = 0.5
—T k=0 m \
N — o0
m =1 . L= 0 -
mr =m—_yp Vk ‘ ‘ S not univocally determined by m(p)!
-1 k=0 m

SacE = E Sk
k
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The way we take the average matters!

STP = “Trplnp ST = _TrpInp
STD

m(—p) =~ const m(p) ~ const Excitation profile

—-p—Ap P p p+ Ap
g

S({mx}) — S, 3 —r~ TN

S;;\?E _ _/ { )+ [1—=m(p)] [1 —m(—p)] }s(p)

» 10* randomly generated {m;}
states satisfying m(p) = e P/?

» ho=T7,h=2
» Sharply peaked around S

SST ' '
Sede =N [T 2 Hm(—p) — m(p) + (m(p) + m(—p) — 1) cos A(p)]

agrees with the stationary limit of entanglement entropy!
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V. Conclusions and Outlook
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We have considered quenches from excited states

Validity of GGE

Horizon effect for multipoint correlation functions

Still open problems

Non-trivial dependence for m;\?

Excitations in truly interacting models?

O

Thank you for your attention

28/28





