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The problem

What we would like condensed
matter systems to look like... ...and what they really look like.



Phase transitions

At the change of a parameter, the equilibrium state of some systems
qualitatively change.

I Hamiltonian of a many-body system:

H (g).

I Free energy density:

f [H ] ≡ 1
V F [H ] = − 1

β
ln Tr e−βH

I At infinite volume, for some value of g or β, f becomes
non-analytic =⇒ critical point.

I No transition at finite volume!



Quantum phase transitions

T = 0 transitions of quantum systems.

E(g)

g

E(g)

g

I Change of the properties of the ground state.
I Closing of the energy gap ∆(gc) =⇒ quantum critical point.
I Infinite volume: level crossing.
I Finite volume: avoided level crossing.



Order of phase transitions
∂f
∂u

g

∂f
∂u

g

Continuous

I Ground state properties
change continuously.

I Diverging correlation length
ξ ∼ |g − gc|−ν .

I Closing of the gap as
∆ ∼ |g − gc|zν ∼ ξ−z .

Discontinuous or first order

I First order derivatives of f (g)
are discontinuous.

I Finite correlation length at
the transition.

I Phase coexistence.
I Sensitivity to

boundary conditions.



How is
the critical behaviour
modified in finite systems?



Finite-size scaling (FSS) at continuous transitions

At the thermodynamic limit, critical scaling.
After a blocking transformation by a factor b:

Fsing(u1, u2, . . .) = b−dFsing(by1u1, by2u2, . . .)

Scaling dimensions:
y1,2 > 0 (relevant perturbations);
yi>2 ≤ 0 (irrelevant).

For homogeneous finite systems of size L, uL ∼ L−1 is a new
relevant variable:

Fsing(u1, u2, . . . , uL) = b−dFsing(by1u1, by2u2, . . . , buL)
Fsing(u1, u2) = L−dFsing(Ly1u1,Ly2u2) + corrections



FSS at continuous transitions: results

Quantum Monte Carlo studies of the finite temperature
superfluid-Mott insulator transitions of

I 2d Bose-Hubbard model.
[G.Ceccarelli, JN, A.Pelissetto and E.Vicari, Phys. Rev. B 88, 024517 (2013)]

I 3d Bose-Hubbard model.
[G.Ceccarelli and JN, Phys. Rev. B 89, 054504 (2014)]

What happens at first order transitions?



FSS at first order transitions?

I No diverging correlation length, but coexistence of
large domains in the same phase =⇒ effective ξ.

I Sensitivity to boundary conditions!

Scaling variable

κ(L) = perturbation energy
natural energy scale = EP(L)

∆(L, gc)
The behaviour of ∆(L, gc) may strongly depend on boundary
conditions.



FSS at first order transitions: results
Ferromagnetic Ising chain in transverse and parallel field.
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[M.Campostrini, JN, A.Pelissetto and E.Vicari, Phys. Rev. Lett. 113, 070402 (2014)]



FSS at first order transitions
Quantum Potts model
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Ferro-para FOQT at gc = 1 for any q > 4.
∆ ∼ ∆∞ + cL−1 for open boundaries.
∆ ∼ L−1 for self-dual boundaries.
Scaling ansätze{

∆(L, g) = ∆(L, gc)f∆(κ),
m(L, g) = m0fm(κ),

κ = (g − 1)L
∆(L, gc) .



FSS at first order transitions
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How does inhomogeneities
change this?



What’s different with inhomogeneities?

External potential U coupled to the system,

U (x) = J
( |x|
`

)p
,

with ` ≡ trap size.

I Trap shallow close to the centre:
As long as ξ � `θ, approximately homogeneous.

I For ξ & `θ, distortion of universal scaling.



Trap-size scaling at continuous transitions

I Inspired by FSS. U (x) yields a new relevant field uv .
I Must relate the correlation length to the trap size:

ξ ∼ `θ, θ = y−1
v ≡ trap exponent < 1.

I Must reduce to FSS in the physical limits.

The TSS limit{
|x| ≡ r →∞,
`→∞

ζ ≡ r`−θ = const.

The modified critical behaviour should appear when r`−θ ≈ 1.



Trap-size scaling at continuous transitions
The exponent θ
By field theoretical means,

θ = p
d − yΦ + p .

(yΦ the scaling dimension of the field to which U (x) couples)

Scaling ansatz

Fsing(u1, u2, uv ,x) = b−dFsing(by1u1, by2u2, byv uv ,x/b)

Fixing uvbyv = 1,

Fsing(u1, u2,x) = `−dθFsing(`y1θu1, `
y2θu2, r`−θ)

[Campostrini, Vicari, Phys.Rev.Lett. 102, 240601 (2009)]



Trap-size scaling at first order transitions

I Proceed in analogy with the continuous case.
I First order transitions are characterised by extremal effective

critical exponents.
[B.Nienhuis and M.Nauenberg, Phys. Rev. Lett. 35, 477 (1975)]

θ exponent

I Conjecture
θ = p

yg + p ,

with yg = D ≡ d + z. (z the dynamic critical exponent).
I Verify a posteriori.



Trap-size scaling at first order transitions
Quantum Potts, p = 1, z = 1.
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Trap-size scaling at first order transitions
Quantum Potts, p = 1, z = 1.
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Trap-size scaling at first order transitions
Ferromagnetic Ising chain, p = 1, z = 2.



Conclusions

I Critical phenomena in realistic conditions
can be described by FSS and TSS.

I FSS and TSS can be applied to quantum transitions.
I ...and in particular to quantum first order transitions.

Future developments

I The low energy spectrum of the quantum Potts model may
deserve a closer look.

I Bosonic mixtures present a rich phase diagrams for further
tests of FSS and TSS.



Thanks.
Q&A?

Slides will be made available on www.pi.infn.it/˜jnespolo/physics

www.pi.infn.it/~jnespolo/physics


FSS - Corrections from irrelevant perturbations

I Irrelevant operators cause corrections to FSS.
I Let ω = −y3 = scaling dimension of first irrelevant

perturbation.

At the transition (u1 = 0),

Fsing(u2) = L−d/y1
[
f (u2L−y2/y1) + L−ωfω(u2L−y2/y1)

]
+ corr.

Universality

I f is a universal function; one for each RG invariant observable.

O = LyO/y1fO(u2,L).



FSS at first order transitions

Ferromagnetic Ising chain in transverse field (g < 1).

HIsing = −
∑

i
σx

i σ
x
i+1 − h

∑
i
σz

i − g
∑

i
σx

i .

First order quantum transition (FOQT) at gc = 0 for any h < 1.
m(i) = 〈σx

i 〉 jumps from +m0 to −m0 across the transition.

∆ ∼ hL with open boundaries;
∆ ∼ L−2 with fixed-opposite (kink) boundaries.

Scaling ansätze{
∆(L, g) = ∆(L, gc)f∆(κ),
m(L, g) = m0fm(κ),

κ = gL
∆(L, g = 0) .

[M.Campostrini, JN, A.Pelissetto and E.Vicari, Phys. Rev. Lett. 113, 070402 (2014)]



TSS: The exponent θ at continuous transitions

Suppose that U (x) = vp|x|p
couples to Φ(x), of scaling dimension yΦ.

PU =
∫

ddx vp|x|pΦ(x) ⇒ p(yv − 1) + yΦ = d

θ ≡ y−1
v = p

d − yΦ + p

Scaling ansatz

Fsing(u1, u2, uv ,x) = b−dFsing(by1u1, by2u2, byv uv ,x/b)

Fixing uvbyv = 1,
Fsing(u1, u2,x) = `−dθFsing(`y1θu1, `

y2θu2, r`−θ)

[Campostrini, Vicari, Phys.Rev.Lett. 102, 240601 (2009)]



TSS: What about traps in a finite box?
l � Ll � L l ≈ L

TSS FSS + TSS FSS

FSS + TSS

I Need to take both l and L into account.

Fsing(u1, u2, uv ,L, r) = L−dFsing(Ly1θu1,Ly2θu2,Ll−θ, rl−θ).

I Trap simulations always include a hard wall boundary.
I Often l � L limit not accessible.

[de Queiroz, dos Santos, Stinchcombe, Phys.Rev.E 81, 051122 (2010)]



Concluding remarks

I No kitten was used to make
this presentation.

I This presentation does not
use Comic Sans MS.
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