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Velocity redistribution of excited atoms by radiative excitation transfer.
Il. Theory of radiation trapping in collimated beams
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We have developed a theory of resonance radiation imprisonment in collimated atomic beams.
Treating the integral master equation describing imprisonment as a generalize¢Sshx@inge)
equation and using the geometrical quantization technique for its solution, we obtained analytical
representations for the effective radiative lifetime, mean scattering number, and trapping factors. We
apply this theory to explain the recent observation of a dramatic velocity redistribution of excited
atoms by radiative excitation transfer after the photofragmentation of Mathis process, the fast
Na(3p) photofragments transfer their excitation energy efficiently via radiation to the abundant
Na(3s) atoms from the primary particle beam. The influence of the hyperfine splitting of the ground
state of Na atoms on this process is discussed. The ratio of the number gf)Na&t(@ns produced

by the radiative excitation transfer to the number of Na)( ®hotofragments was found to be 0.13

and 0.19 for photodissociation of hlanolecules in the vibrational levels”=17 andv” =23,
respectively. This is in good agreement with the corresponding experimental values of 0.16 and
0.22. © 2003 American Institute of Physic§DOI: 10.1063/1.1605378

I. INTRODUCTION case. In atomic beams, the quantitative estimates of the ra-
diation trapping are complicated by the inhomogeneity in the
velocity distribution(and, hence, the spectral line shapefs
atoms in the beam. This inhomogeneity causes difficulties in
the mathematical description of the phenomefidfor this

Feason radiation trapping under atomic beam conditions is
species in the ground state at high enough densities, the reso- bping

nance radiation will be absorbed and reemitted many timegoOrly presented n th_e I|_terature. _ _— .

. . An important implication of radiation trapping is the in-
before it escapes from the volume occupied by the atoms'rease of the effective lifetime,; of an ensemble of excited
The successive reabsorption and reemission of photons d&r et

crease the effective radiative decay rhig of the ensemble gtoms compared to the spgn'{aneous lifetimpg of & single
lated atom. However, this is not the only consequence to

of atoms in the sample compared to the spontaneous dec%%P ) ) o
rate T e considered. In the context of photodissociation processes
na an earlier study considered radiation trapping in a vapor
U= 9T nats ) cell as a process affecting the measurement of absolute in-

where g is a dimensionless parameter, the escape factoensity of the fluorescence emitted by excited photofrag-
which can be regarded as the reciprocal of the number dihnents. An experiment on molecule—atom collisional energy
emission and absorption events before the escape. The dgansfet’ has qualitatively shown how the radiation trapping
cape factorg depends on a number of experimental condi-changes the spatial distribution of excited atoms in a reso-
tions, like the number density and velocity distribution of hance state in an effusive molecular beam. Yet another
absorbing atoms, the spectral line shapes, and the geomeg{udy” has demonstrated that radiation trapping plays a
of the region in which the atoms are confined. Although thedominant role in the thermalization of velocity-selected ex-
radiation trapping has been studied for about 80 years, theited atoms in thermal vapors. Probably the most spectacular
complexity of this process has not allowed an adequate devanifestation of radiation trapping is the recent experimental
scription except for a limited number of idealized geom-observation of a dramatic velocity redistribution of excited
etries, like slabs, cylinders, or sphefgsassuming a homo- atoms after a photodissociation process, which is described
geneous angular distribution of atom velocities. in the preceding publicatidf (hereafter referred to as Paper
At first glance it may seem that the density in atomicl). In this study Na molecules in a supersonic beam were
beams is too low to cause radiation trapping. However, irselectively prepared in single excited rovibronic levels of the
this work and the preceding one we show that this is not thelectronic ground statX 12; and photodissociated by ab-

Trapping of atomic resonance radiation in vagpcalled
also radiation imprisonmentvas first described by Miln&,
Holstein? and Bibermanin the first half of the last century.
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sorption of a photon from a fixed frequency laser via thespectrum of eigenmodes and the radiative decay constants, is

B 1, state: solved using thegyeometrical quantization technigy&QT)
et ‘o first described in Refs. 4 and 14. This approximation is a
Nap(X %4 ,0"J") +hv—Naz (B Il,) rather universal and yet accurate analytical method which
. Na* (3pay) + Na(3sy,) + AE, . can be used for the treatment of a wide class of integro-

differential transport equations. We exploit then G@il
(2)  sec. IV D to reduce the RI master equation to an equation of
Fokker—PlanckFP) type. Section V describes the excitation
gource function formed due to the emission of photons by
fast Na(3) photofragments. Section VI is devoted to the
|RADEXT processes. We apply the theory to the experiment

excitation of the Na molecule prior to dissociation and the described in Paper | and discuss the influence of hyperfine

energy of the absorbed photon. The experiments showe&,pmting of Na energy levels on RADEXT. Analytical expres-

however, that besides the expected fast N|(&oms a rela- sions for Fhe ratio of the number of slow NafB atoms
tively large fraction of “slow” Na(3p) atoms is also pro- produced in the RADEXT proces8) to the number of fast

duced. Here “slow” means that the atoms maintain their ini- >0U4'¢€ Na($) atoms which are produced in the photodisso-
tial velocity in the beam, but do not acquire additional ciation are obtained. The results are compared to the experi-
kinetic energy. In particular, their velocity component per_ment_al data of PaPer I In Appendix A, the d_etalls of the
pendicular to the molecular beam axis remains small. Th ourier transformatlon of the RI ”?""Ster equation necessary
ratio of “slow” to “fast” Na(3 p) atoms was measured to be or the calculations by GQT are given. In Appendix B, the

0.16 and 0.22 for dissociation of Man vibrational levels den?/atlonbof efqulauolzs descnbmg]]c the r('je:jatlon f;"g;?_rthe
v"=17 andv” =23, respectively. This observation was inter- total number of slow Na(@) atoms formed due to

preted as a consequence of radiative excitation transfer fror?\nd the number of excited photofragments is given. This

the “fast’ Na(3p) photofragments to Na( atoms in the derlvafuon prrc]Jylrc]ies alsoda Jus::flcatlon of some Iofp:[he azl-
primary particle beam: sumptions which are made in the present paper. In Appendix

C, the effect of hyperfine splitting of Na ground state on

The velocity distributions of the Naf8 photofragments
were measured using an ion imaging technique. This phot
dissociation process produces Npf&nd Na(3) fragments
with well-defined kinetic energies depending on the interna

fast N& (3pg) +slow N&3s;)) radiation imprisonment is considered. For readers mainly in-
terested in ready-to-use analytical formulas for calculation of
—fast Na3s,,,) +slow N& (3ps). (3)  trapping factors, Secs. II, Ill, and VI are most relevant.

We shall hereafter refer to this procesgadiative excitation  |I. FORMULATION OF THE PROBLEM

transfer (RADEXT). _ _ The extent of radiation imprisonment is determined by
The scope of the present paper is twofold. First, we protne apsorption coefficient of the mediuky. The latter de-
vide a det.ailed gnalytical de;cription of radiation imprison—pendS on the velocity distribution(v) of absorbing atoms.
ment(RI) in collimated atomic beams. Second, we demon-g,ppose the medium is a collimated supersonic beam. For
strate how this phenomenon implies remarkable changes if|,stration we choose the parameters of a Na/Neam used
the apparent translation energy distribution of excited specieg), the experiments in Paper |. The flow velocity of atoms in
after a unimolecular fragmentation process. Analysis of Ripe beamv;=1340 m/s, with a full 1/e widths of the velocity
under the particular conditions of the experiment describedjistriputions of ground-state atoms and molecules along the
in Paper | shows that the observed velocity redistribution oyegm axis ofAv=300m/s andAv ,o=260m/s, respec-
excited atoms can indeed be quantitatively described. tively. In the direction perpendicular to the beam axis the
The paper is organized as follows: In Sec. Il, the spectrahioms are collimated to a divergence of 0.8°, which corre-
absprption coefficient for a highly collimated atomic be_am iSsponds to a velocity spread of 9 m/s. Such small transverse
derived and the consequences of the photon emissiongg|ocity spread allows us to assume for further mathematical
absorption sequence are discussed. It is shown that radiaticgp]awsis that the beam is ideally collimated: i.e., we neglect
trapping does not change the velocities of slow excited atomg,e deviation of the velocity vectors of atoms from the par-
in the primary beam. This result allows us to separate thgcle heam axiss, . The normalized velocity distributions of

spatial and velocity variables in the master equation describy(3s) atoms and Namolecules in the beam thus become
ing the dynamics of the excited states. In Sec. Ill, the escape

factors are evaluated under steady-state conditions. The fi(v)=8(v,) 8(v,)fi(vy),

equation for the mean number of scattering events of a pho- 1 02

ton initially emitted at an arbitrary point in space is derived fi(v)= —exp( — —2) , (4)
using different methods which allow an estimation of the \/;Avi Av;

accuracy of the calculations. The expressions obtained for w

the escape factors allow us to find the total number of excited f dv fi(v)=1,

atoms for an arbitrary spatial distribution of the excitation o

sources. Section IV analyzes the Holstein trapping factorsvherei ={at,mo} stays for atoms or molecules and the sym-
gj- They are connected to the effective lifetimes of modesbol 6 denotes the Dirac function, while velocity, is mea-
(eigenfunctions of the imprisonment equation. The spectral sured relative to the mean flow velocity of the beam. Note
problem, which includes the determination of the overallthat only this relative velocity is of importance for the fol-
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lowing theoretical treatment; therefore, the flow velocity is
hereafter disregarded. Furthermore, we assume that the spe
tral absorption and emission profilas, and ¢, are deter-
mined by the Doppler profile, which is justified since the
characteristic Doppler frequency shiftvp~Av/\ is much
larger than the natural linewidth, ;.. The absorption coef-
ficient for a photon of frequency moving in the directiom

is then given by the relatidn

Ya

-

Cc R I 2l X
K,,=E”)Fnatl\lov—J’ d3v fa[(v)ﬁ( n-ov-— OC),
0 Vo

,—
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wherec is the speed of lighty, and\ are the frequency and
wavelength of resonance photons in the line cemjgs=2
andgs,=4 are the statistical weights of the lowes;3 and
upper Jg, levels, respectively, andNy=2x10"cm 3
gives the density of the absorbing N&(3) atoms. Using
the distribution(4), Eq. (5) reduces to

Ko Uy
Tmmenl \/;Avat fat(
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Here 6 is the angle between the directionof the photon

propagation and the beam axis (see Fig. 1 and «q FIG. 1. lllustration of the imprisonment of resonant radiation within an
=3.7cm ! is the Doppler absorption coefficient at the line ideally collimated atomic beam. The Doppler effect implies that the photon
center ah=589.16 nm(the conditions of Papeb.IFrom Eq. emitted in the directiom by atom(1) moving with the velocityﬁ§1) along

(6) it is clear that the absorption at the center of line is largee, Particie beam axis can be absorbed only by such épmhose velocity

in di . dicul h icle b is b vy~ has the same projection on the directionrofs the velocity of the

In Ire_CtlonS perpendicular to the particle eam axis eCausgnitting atom(1): vMA=u{PA. This condition is valid for each pair of
the width Avp~|cos#| of the Doppler profile decreases emission-absorption events.

when the angle increases from 0° to 90°. This effect out-

weighs the relatively small opacity,R=0.37 of the beam

with radiusR=0.1cm, so that radiation imprisonment be- SH(f o) =S* (D Fo)~f 8
comes noticeable even under the supersonic beam condi- () (r) (Uy): (vy) aj(vy)' ®
tions. The source functiorS*(r)= /[ dv,S*(r,v,) describes the

The generalized master equation describing the evoluexternal excitation ratécm *s™*]. The factorization(8) is
tion of the densitm§|om)(F,vy,t) of excited resonance atoms Valid for most of the practical situations, like excitation due

is given by Holsteif and Bibermart:® to laser irradiation or collisions, but the velocity distribution
5 f(vy) depends on the specific parameters of the experiment.
> 5 5 i * i i : _
ﬁn;ow(r,vy't): — (T part W)NEo (0 1)+ S*(F0,) The last term in Eq(7), Gng,,,, describes the imprison

ment of radiation within the volumé), occupied by the

oT tén* (Fooy i) 7) absorbing atoms. Withopt imprisonment, @) reduces to a

nat>Nsioul I+ Vy 1) conventional rate equation where the excited atoms decay at
The excited atoms decay due to spontaneous emigsite @ spontaneous decay rdfg,. WhenGn},, becomes non-
I'.) and collisional quenchingrateW). In what follows we  negligible, Rl leads to a smaller effective decay rétg [see
neglect the quenching rate unless indicated otherwise. Theg. (1)]. We now seek an explicit representation of the im-
densityn* is a function of both the location of atoms and prisonment ternGn},,,. Suppose a slow Naf&,,) atom at
their velocity. For collimated beams the analysis of the vepoint 1 (see Fig. 1 moves with the velocity)§1) and emits a
locity distribution simplifies considerably. As will be shown photon in the directiom. Due to the Doppler shift with
below[see the discussion after E¢5)], the RADEXT from  respect to an atom absorbing the photon at point 2, we re-
fast Na(3s/,) photofragments creates the initial ensemble ofquire the conservation of the velocity projection on
slow Na(3s,) atoms determining the excitation source (v{Ve,)n=(v{P6)A, i.e., v{V=v{®. In other words, the
functionS*. The velocity distribution of the source function, photon reabsorption in the system of slow Np§g) atoms
f(vy), appears to be very close to the velocity distribution ofdoes not change the velocity, of the atoms involved. The
ground-state atoms in the beam: frequency of the photons seen by the atomsvis vg
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+voc‘l(vyéy)ﬁ=v0+cos¢9vy)\‘1 and is thus strongly depen- functiong identical to unity, i.e.g=|1)<g(r)=1. Since the
dent on the direction of photon propagation. Due to the coneperatorG, is Hermitian (symmetrical with respect to its
servation ofv, during successive absorption proceséE® arguments Eq. (12) has an equivalent representation
Fig. 1), the formation of slow excited atoms can be consid-
ered separately for each subensenBjewith fixed velocity w_ L T_G -1 1 3, q* (P\N (F

- . g g . . Nv =F_<S*|(I_Gv) |1>=F_ d°rs (r)Nv(r)1
v=v,. Taking into account the factorizatids), we rewrite nat nat
Eq. (7) in the form

N, (1) =(1-G,) 1), (13
—tn:(F,t)z —Fnap:(F,t)+Fnatf d3r’ G,(r,r") whereN, can be interpreted as the mean number of scatter-
2o ing events experienced by a photon initially emitted at the
Xn*(F' 1) +S*(F), pointr (Ref. 15. Indeed, if we restrict the excitatiofwith
B the total intensityS}; [s™1] to a single pointr=ry, the
n;‘,OW(F,Uy,t)=njy(F,t)f(vy), (99 source function becomes (1) =Sk 6)(r'—r,), where5®
is the three-dimensional Dirac delta function. The total num-
. 1 &y Lo o, ber of excited atomgy* = SET' N, (r), is then determined
G,(r.r')= 4n|i—F|2 cos6°® ‘{_ Cosa|r—r |)’ by the effective radiative lifetimeN* = Sf 7. The amount

by which 7= maN, (o) exceeds the natural lifetims,, in
v§ a transparent medium is thus determined by the number
{uy= Ko €X (10 N,(rp) of photon captures. Calculating the total number of
. excited atoms by integration over the beam volume accord-
The kernelG, of the integral operatgr‘;n;*,owgives the prob- ing to Eq. (13) is simpler than by solving the integral Eq.
ability that photon emitted at point’ will be absorbed at (11).
point r. The effective absorption COEfﬁCieﬁ; /cosé for the quation (13 |mp||es that NU satisfies a relation i(
subensembl& , is derived frorp E9(6), while the angled is _éu)Nv(F) =1, ie.,
measured between the vectorr’ and the beam axiy.
Note that we deal with population of excited states and are > _ 3,/ NN
not interested in polarizatidhand alignmerf phenomena. N, (F) f G, (1IN, () =1. 4
As was shown in Refs. 18 and 19, the polarization propertie
of the radiation do not noticeably influence the excited-stat
density in the vapor provided no special efforts are undermean scattering numbet, (1) depends only on the distance
taken for preparing strong atom alignment. Mathematically'a Of Point ' from the axis of the particle beam, so that
ignoring polarization effects corresponds to angular isotropido (=N, (r). Let us determine the mean scattering num-
emission of photons and results in the factordntering berN,(rp). We shall use for this purpose two independent

Vat

ecause of the cylindrical symmetry of the keri@, the

expressior(10) for the kernelG, . approaches which should allow the assessment of the accu-
racy of estimates.
Ill. ESCAPE FACTORS UNDER STEADY-STATE A. Mean number of scattering events N, at large
CONDITIONS opacities: Fokker—Planck technique
When steady-state conditions apjés in the case of the The kernelG,, Eq. (10), is an exponential function of
experiment described in Papgr the Rl master Eq(9) sim-  space coordinates which implies a finite mean free path value
plifies significantly: for a photon imprisoned in the systeR), . Therefore it is
S*(F) justified to use the Milne approatfor transforming the in-
n;‘(F)— d3r’ GU(F,F’)n;‘(F’)z (1) tegral Eq.(14) into a differential equation of Fokker—Planck
Qp [ nat type2®t’ For a cylindrically symmetric medium with large

It will prove beneficial to write the solution of E11) inan ~ OPacity xoR>1, Eq. (14) can be approximated by the fol-
operator notationnl’j(r*)=l“,ja%(l _ U)—ls*(f’)' and con- lowing diffusion problem(we refer the interested reader to

sider the total numbeN* of excited atoms in the ensemble Refs. 20 and 17

[

S (’I\_év)ﬁv(rb)zly
- 1
N:Ef d3rn¥(r) TGN () = 11d d o
Qp ( o)Ny(rp) = 1_5§§Ed_fbrbd_fb
1 ~ A .
=T d*r(1-G,) " 1s*(r) The photons are not reflected from the boundary of the
natJ 2y sample considered, but escape from the volume. Therefore
1 o the diffusion Eq.(15) must be supplemented by a boundary
= F_<1|(I -G,) Ys*). (12 condition
nat
. d — _
Here, the scalar product of two functions{g|h) N1y = N (r o 16
= d3 g(r)h(r), is introduced. The symbdl) denotes a dry o(16) = VIS N, (1 Irp=r (18
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The derivation of the expressions given by Ed$) and(16) Y&
is relegated to Sec. IV where a general representation of the
Rl equation is obtained. At large opacities, E4$) and(16)

have an exact analytical solutioN{®9®(r)=0.5/15¢,R
+3.75(¢,R)%(1-r2R"?). The method for extrapolating
N{a%) to the region of small opacities is described in Sec.
IV. In essence, the procedure consists of two steps. In a trans
parent medium £,R—0) a photon is emitted only once
without reabsorption. Therefore the conditiow,(rp,)=1
needs to be fulfilled. That condition can easily be satisfied by
setting N,=1+N{#%)_ However, the discussion in Sec.
IV D. shows that such extrapolation alone does not ensure &
satisfactory accuracy. We follow therefore a generally ac-
cepted procedure in the treatment of Rl which reduces the
radiation transfer equations to a form equivalent to the one
describing a Brownian-type motion of photons in the absorb- Z
ing medium:” In this method a correction is obtainésee

Sec. IV D) by rescaling the opacity,R with {,R:

V15

2

FIG. 2. Spherical coordinate systems used to derive the source function
rg) S*(rf=0) due to radiative excitation transfer from fast Npg3) atoms to
1—-=—/|, slow Na(3s,/,) atoms. The photon is emitted at poftitby a fast photofrag-
2 ment and absorbed by a slow ground-state atom at the centdr)(of the
(17) photodissociation zon€pp. Using two steps of Euler transformaation, the
1 ) coordinate systenfx,y,z} related to the absorbing slow atomsrat0 is

replaced by a coordinate systefry,z} related to a photofragment at
0.2+5.47;,,R+0.169,R)?

=f" emitting a photon in the direction=—¢&;.
The accuracy of this extrapolation can be examined by com-
parison with results of an independent approach suggested in

— ~ 15 -
Nu(rb):1+ §0R+Z(§UR)2

R=R| 1+

Ref. 3, which is valid for small opacities. LR
Meg=1+7,R |n< ”2 -1+C
B. Mean number of scattering events N, at low
opacities: Biberman method (LR?[ (LR
— 22 In| 22=| ~0.5+C |+, (20)
We now solve Eq(14) using the Biberman methotf®2 2 2

At small opacitieskoR<0.5, the mean number of scattering whereC=0.57722... is the Euler constaritThis expansion
events,N,(rp), is a slowly varying function of, [see Eq. is accurate within the range of validityx§R<0.5) of the
(17)]. One can therefore repladé,(r’) in Eq. (14) by its  Biberman approacfsee Fig. 8)].

value atr’ =r:

=1 (18) IV. EFFECTIVE RADIATIVE LIFETIMES

NU(F)[l—f 43’ G, (F,F")
R UNDER TIME-DEPENDENT CONDITIONS

For determination of the accuracy of EG.7) it is sufficient o _ _
to consider the value dfi, atr,=0, i.e., wherr lies on the In order to justify the use of the relations given by the
beam axis. After introducing spherical coordinate§ ¢,6), ~ £dS-(19), (16), and(17), we exploit another interpretation of

as depicted in Fig. 2, the integration over the radial coordifh€ mean scattering numbhr, given in Refs. 9, 24, and 25.

nater’ and azimuthal angle yields immediately We demonstrate th&, (r,) is closely related to the effective
— decay rate of an ensemble of excited atoms. Specifically, we
Ny(rp=0)Mes=1, are interested in the survival of the initial distribution

(19 n*(r,t=0) of excited atoms after the termination of the ex-

. citation att=0, which is implemented by settingS* (r)
=0] for t=0 [see Eq.(9)]. For convenience we substitute

Here M4 is the so called Biberman escape factor, whichn} (1,t=0) by a distributionp(r,t=0)=|p,) normalized to
gives the probability that a photon emitted at the beam axiginity: [ o, d°r p(f,t=0)=1.
escapes from the beam volurfig, without absorption. Fig-
ure 3a) comparedM i with the number of scattering events,
N,(r,=0), determined from Eq.17). Under the conditions We express the solution of the master E3), describing
of the experiment discussed Paper{)R< x,R=0.37) the the time evolution ofp(r,t) =n; (f,t), in terms of a Green
deviation ofN,(r,=0) from M;ﬁl does not exceed 10%. In function: p(r,t) =exd —tl.(1 —G,)]|po). The probability
fact, the Biberman escape factd®) can be expanded in a P(t) of finding an excited atom in the atomic beam volume
series of the opacity paramet&/R (Ref. 22: at the moment is then given by

1 (= .
Mar= | des'”eexp(_g”Rm

A. Time-dependent interpretation of l\7,,(rb)
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P(t)= fﬂ d®r p(F,t)=(1|ex —tT naf 1 — G,)1|po),
i 21

where P(t=0)=1 thanks to the above normalization of

|po). Following Ref. 26, we shall characterize the decay pro-

cess by a mean lifetime.x(pg). The probability that the ex-
cited state will decay within the time intervdlt is —dP,

where the minus sign accounts for the loss of excitation in

the volume(}, . Therefore,

o]

Teff(Po)Ef —dPt

0

:fdtp
0

= f:dt<l|exn: _trna{i_ év)]|p0>

=T H1(1-G) Y po)-

Since the RI operatoév is self-conjugated, the position of
the functiongp,) and|1) can be interchanged. Together with
Eq. (13) we therefore obtain

et Po) = <p0|(i— é)il| 1>: 7'natJAQ d3r ﬁU(F)po(F) (22)
b

Suppose the excitation was initially located at the pojit
po()=8C)(r—ry). The value ofr,,N, () has then an ob-
vious meaning. It is the average lifetime of excitation that
was initially localized at the point,. In the more general
situation of arbitrary initial spatial distribution of excited at-

7099
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Number of scattering events

100 p—r—rrrrr

Trapping factor g |
=

Opacity ¢ R

FIG. 3. Trapping characteristics as a function of the opagijfg of the
atomic beam(a) Comparison of mean number of scattering evevjér,
=0) at small opacities obtained by different metho@b: Solid curve:
Fokker—Planck method, Eql7). (2) Dashed curve: reciprocal of the Bib-
erman factoM o, Eq. (19). (3) Dot-dashed curve: reciprocal of the series
expansion of the Biberman factor, EQO0). (b) Trapping factorg, of the
fundamental modg¢=0. The solid curvgl) displays the exacy, values

oms the effective lifetime is found by integration over the obtained from Eq(28) using the exact functio(p), Eq.(26). The dashed-

beam volume. This explains the relation of the mean scatte
ing numberN, with the time-dependent radiation imprison-
ment problems, even though the functional formNf is
determined by the steady-state Efj).

B. Holstein trapping factors and formulation
of the spectral problem

Initially, Holstein introduced the escape factgras a
dimensionless parameter characterizing the decrease of t

radiative decay rate of the ensemble of atoms due to radia-

tion trapping? However, in later studies it became generally
accepted to use the parametgys$o characterize the increase
of the lifetimel” One therefore needs to distinguish the es
cape factog defined by Eq(1) from the trapping factorsg;
used below.

The solution of Eq(9) (without the source functio8*)

can be expanded in the Fourier series of exponentially der_elatlon betweerr,;

caying eigenmodes{(f,t) = y; (1 exp(-At) (Refs. 2 and
17). The eigenfunctions are found by substituting, in B9,
al(dt)——N\;, where\; are the effective radiative decay
constantgeigenvaluesof the eigenmodes. Thus, E®) re-
duces to the following spectral problem:

Nji(1) =T a1 = G (F) + Wi (),

}\;l:TjETnagj. (23)

Downloaded 19 Nov 2008 to 131.114.129.199. Redistribution subject to Al

Iqotted curve2) corresponds to thg, factor evaluated using Fokker—Planck

approach determined by approximati@8). The dashed curved) presents
Fokker—Planck results corrected by introducing a reduced optical thickness.
In the scale of the figure curveé$) and(3) practically coincide.

The position-dependent rate const#y represents a formal

quenching process which is introduced for the sake of tech-

H(iacal convenience of further calculations. Such a E)rocedure

does not influence the above discussion silég(r)=0
ithin the beam volumé,, .

By definition [Eq. (23)], the trapping factorg; are di-
rectly related to the effective lifetimesg of the eigenmodes.
They give the number of absorption and reemission events
experienced by a photon in thth mode. The latter decays
with a single Iifetimerj=reﬁ(¢j(F)). Using Eg.(22), the
and the mean scattering numbéy can

W

be written as
gj:Tj/Tnat:f d3r N_U(F)¢j(F)/ f d3r ;(1).
Qp Qp
(24)
A full solution of the spectral problem defined by E83) in

an atomic beam can be obtained by employing the geometri-
cal quantization techniqu@;QT)_“E,Z?
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C. Solution of the spectral problem using GQT (23) should be extrapolated frof,, to an infinite spacé).,
(Ref. 4). This can be achieved by employing the formal pro-
cedure proposed in Ref. 14: the volurfk, is divided into
two parts, such that quenching is absent witlilg (W,
=0), while outsideQ), a strong quenching causes fast deac-
nt_ivation of excited stategWq(r)=«]. This construction

The basic strategy of GQT lies in exploiting the analogy
between the integral Eq23) and the stationary wave equa-
tion for a classical Hamiltonian systehfirst, the spectral
problem is considered in infinite spacg,, which in our

case corresponds to a beam with infinite radius. This is co | the f lated task si Il Na03at di
venient because for infinite space an exact analytical solutiof0 VS e formulated fask since a @(3atoms disappear

is possible. Due to the cylindrical symmetry, the solutions of|mmed|at_ely_out3|dé)b and thus _do T‘Ot aﬁeCt th_e excnatlon
the integral Eq(23) do not depend on the coordinageas- of atoms inside the beam. Keeping in mind the interpretation
sociated with the beam flow directions:(F)= i (x.2). of W, as a potential energy, it is clear that the quasiparticle
These solutions can be represented in Ja simsle,form Jp confined within a potential well with infinitely high walls
propagating wavey;(7) = exp(p-f) of a freely moving par- created by the atomic beam boundary. Hence the quasiparti-
ticle with momentump, which plays a role of a continuous cle IS trappeq inside thg beam volurfl, and experiences
mode index. The dependence on theoordinate is elimi- elastic reflections from its boundary. The factarsthus be-
nated by setting, = 0. The momentunp={p,,0,p,} is thus come the discrete quantized energy values of the quasiparti-
y . X1V~ z

orthogonal to the beam ax'éty. As shown in Appendix A, cle.

the use of modess reduces the spectral proble®3) to a From the semiclassical point of view, the solutions of the
set of simple algebpraic relations wave Eq.(27), which determine the eigenstates of the qua-

siparticle, can be found by imposing appropriate quantization

Npti(1) =T 0V (P) (1) + W i (T), conditions, whereby it is sufficient to consider only the radial
. (25 dependence of the modeg,= ;(ry,). The quantized values

V(p)=1- f f f dx' dy’ dz' p; of the quasiparticle momentum can then be extracted from
o0 the Bohr—Sommerfeld quantization rité®

Xexpipx' +ip,z' )G, (r=0,1"),

Pj —
whereV(p) is determined by Fourier transformation of the Zg_vé”R:Zm * §+A8(pj), N=TnaV(py). (28)
kernelG,, Eqg. (10). According to Appendix A, its explicit
representation is given by Equation(28) has the following physical meaning. Within
- the volume(},, the HamiltonianH=T",,V(p) does not de-
V(p)=V(p) pend on the spatial coordinate(W,=0). Therefore the
o 1 quasiparticle moves freelyp(= const) within the beam and
=1—f désind s , is reflected from its surfacer{=R) or axis (,=0). The
0 V1+p?/ ¢l sir? 6 cos 6 motion is thus formally restricted to half of the beam diam-
b= \/m (26) eterr,=0. The corresponding wave functigthe jth mode

has the form of a standing de Broglie waVevith phase
Obviously, V(p) is a function of the absolute value of the pP;rp+Sy. The phase of the quasiparticle jumps at each re-
momentum p=|p| (i.e., of the dimensionless ratip  flection. It increases by S= 7/2 at reflection from the beam
=p/¢,), which reflects the azimuthal symmetry of the RI axisr,=0 (Ref. 28 and by AS(p;) at reflection from the
problem considered here. The integral operator induces Beam surfack(see Fig. 4
multiplication by the functior’/(p) in Fourier space and can
be considered as a functidhof the momentunp. The latter m 2 (1 [ V(p)—=V(p;)
can be replaced by=—iV in the space ofx,z} coordinates P))= 2 ;J ! V(p; /§)—V(pj)) 1-¢2
(i is the imaginary unjt?® The spectral problert23) can thus
be expressed in an alternative form The quantization rul¢28) defines resonance conditions for
N .2 S > > the existence of thgth eigenmode in a “resonator” repre-
A (D =TraV(=1V) (1) + Wo (1) (1), @) sented by the beam volung®, . The “allowed” (resonance
We immediately recognize the similarity of the above ex-values of the momentump; determine the decay ratgs via
pression with the generalized stationary Sclimger equa- the kinetic energy of the quasiparticle. The longest-living
tion with Planck constanti=1. The “quantum” Eq.(27)  fundamental mode corresponds to the ground state jvith

dé. (29
0

describes the wave functidmode zpj(F) of a classical sys- =0. The Holsteing, factor [Fig. 3(b)] is equivalent togg
tem (the so-called associated quasiparficieith a uniquely =(Tna3\j=0)‘1.
determined HamiltonianH (p,r) =T .V(p) + Wq(r). The Using the approximation suggested in Ref. 4, it is

functionI",,V(p) gives the “kinetic energy” of a quasipar- straightforward to evaluate the phase sii§(p;) in a form

ticle, while the quenching rat®V,(r) corresponds to the convenient for rapid evaluations:

“potential energy.” With such an interpretation, the effective

radiative constants; correspond to the total “energy” of the ™

quasiparticle. : P ¥ ASapd Pj) = 5 [1+ Yapd P, (30)
In order to preserve the quasiparticle notation under the

conditions of finite beam volum@,, the spectral problem where
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1,0 all trapping factors reach the value of unity. This circum-
L stance can be accounted for by using an approximation
0.8
I V(p)=VesP)
B 0,6 2
5 | - _ASHp)=2 arctaré J1_5§) .33
< 04 155, +p
02 L // | The spectral problem, Eqg.(23), szpj(F):Fnat\/Fp
| P ] X (—iV)y;(r), is a second-order differential equation with a
0.0 T general solution in the form of standing waves;(ry)
0,01 0.1 1 10 ~cospR—pr,—ASp/2), near the beam boundary. The phase
Opacity ¢ R shift ASg(p) is uniquely determined by the functidfyp via

the integral(29) which yields the exact representati(3g).

FIG. 4. Phase factoAS entering the quantization law, E8), and ac-  rom this it follows immediately that all modefg satisfy the

counting for photons escaping from the beam volume without reflection orrelation(16) (whereN,— l//]) which we use as the boundary

its boundary. The dashed cundS; is the Fokker—Planck result faxS. condition (16). Note that the phasA S( p) was derivedsee
Ref. 4 for details assuming the absence of reflection of es-
caping photons from the boundary of the absorbing medium.

1 d ( dV(p)) With the help of Eq(33), Eq. (31) determiningN{™™ for

Yapd P)= 5 dp p dp the operatoVgp is transformed to the form
Since the functiorV(p) depends on the dimensionless ratio T 1 9 9
p=pl/{,, Eq. (28) yields a system of equations —— NP (rp) =1, p’=-A=- PRbr
{\i(P)).x,(P;)} determining the dependence ®f on the 15, +p b b ~0Tp
opacity x, = ¢,R in a parametric form comfortable for com- (34)

putational purposes. This equation has a solution

2
D. Solution of the spectral problem
using the Fokker—Planck approach

b

The spectral problert23) relates uniquely to the impris- ) (39)
onment operato6,, Eg. (10). Equation(27) allows the re- _(large:_\/l—% R+ 1_5@ R)2 1 r_b)
placement of the imprisonment operator by its alternative v 27" 0 R?/)’
representatlonB —I—V(—|V) Equation(14) for the mean _
scattering numbeN,, can then be rewritten as Obviously, the introduced functioN{%®) satisfies the equa-

i tion — AN{9)=15¢2 with the boundary conditiofl6) and
V(=IVIN,(rp) =1, (3D was evaluated already in Sec. Il A. Thus the approximation
wherer, is the distance of point from the beam axis. In the Vrpprovides indeed a proper extrapolation of the FP solution
quasiparticle terminology, which was introduced in Sec.towards zero opacity of the beam. The accuracy of calcula-
IV C, the above equation identifies the integral imprisonmentions employing the approximated functiaftp instead of
operator with the kinetic energy operaté(—iV). At large  V(P) can be judged from Fig.(B) whereg, factors calcu-
opacities of the beam, the ratfp=p/¢, is small, and the lated by different methods are compared. These factors de-
behavior of the function/(p), which is determined by the termine the lifetime of the fundamental mode and are related
integral (26), reduces to a simple quadratic power law to the escape factor in Eq1) asgo=g *. The g, value
calculated by the FP method reaches the largest discrepancy
of 33% from the exact value at opacitiesR=0.2. It occurs
due to the rough approximation of the actual phas; Eq.
(29 (Fig. 4, solid curvg by the FP phasd Sgp, Eq. (33
whereA = —p?=V? stays for the Laplace operator. In other (Fig. 4, dashed curveThe reason for the disagreement of
words, the kinetic energy of quasiparticles simplifies to thethe two phase factors can be easily seen from the approxi-
usual ~ p? dependence Therefore the wave representatiomation (30). Indeed, for a function/(p) with a power law
(p—p=—iV) of quasiparticles justifies the use of the FPdependence/(p)=a+ Bp” on the momentunp the phase
approach for the solution of both the steady-state Etg.  shift is AS=m/2(1+ y/2). At large opacitiep=p/{,—0,
and(31) and the spectral problei23). and bothV(p) andVex(p) exhibit the samg? behaviosee
However, the asymptotic Eq32) does not satisfy the EQ.(33)], so thaty=2 andAS=ASg=. In a nearly trans-
requirementV(p—) =1, which holds for any transparent parent media, in contrash—o. This implies thatV(p)
medium with zero opacity. Indeed, if,R=0, the photons =1—8p~ ! [y=—1: see Eq.(26)] and Vex(p)=1—Bp 2
should be able to escape from the gas without absorption and(y=—2). The corresponding phase shiftssS= /4 and

2

- 1
V(p>|aﬂo=lp—5§2:V(—iV>=—ﬁA, (32
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ASe=0 differ considerably at opacities, R<0.3 (see Fig.  The excitation functior§* should account for the following

4). Therefore it is necessary to introduce a correction to theonditions.(i) The photons are emitted in the volurfigp, by

extrapolation oN™, Eq. (35). the fast Na(Ps,) photofragments, while we assume that
We can take advantage of the fact that at small opacitiefeir concentratiomz, is constant within thelpp. (ii) In

the functionN,(r,,) varies weakly within the beam volume the photodissociation process, the Npgg) photofragments

and replace it with its value in the center of the beam@'® formed with a velocity distributiofi,s{(v). Due to the

N, (rs)~N,(r,=0). The relation betweeN, and the trap- Doppler effect, the photons emitted by the photofragments at

ping factorg, of the fundamental mode can then be imme-POINt T’ and propagating towards=0 (see Fig. 2 have a
diately established from the integré24): go=N,(r,=0). frequency distribution

The analytically available information amy factors provides R R

an important tool for improvement of the extrapolation of FP ev(r’)=)\f d® fras(v)8(Mv—v,), v,=(r=wo)\,
results into the region of small opacities. We follow the con- (39
ventional method described in the literatueeg., Ref. 17

and rescale the opacitg,R— ¢,R by imposing the require- which is normalized ag dve,=1. The resulting spectral

_ (FP) s = intenstI , of radiation exciting the slow Na@g,,) atoms at
mentgo(ng)—gp (£,R). In other WO“_’% we reP'ace the pointr=0 is formed by photons emitted by photofragments
actual beam radiuR by the reduced radiuR for which the  f.5q the entire set of pointE’ belonging to the photodisso-

evaluation ofg, factors by the FP approach becomes exactgjation zoneQpp. The factorG,(f=0r"), Eq. (37), ac-
The calculations yield results which can be quantitativelyoqynts for the probability of these photons to reach the center
approximated by Eq(17). Figure 3b) shows that thego  of the zoneQpp without absorption. Finally, the coefficient

values obtained using the reduced FP extrapolaiii@shed . getermines the fraction of incident light with intenslty
curve 3 excellently agree with the result of exact calcula- \yhich is absorbed ai=0.

tions (solid curve. Figure 3a) shows the relatedN,(ry The total velocity of photofragmentérelative to the
=0) values. One can see that the discrepancy between thgean flow velocity of the beanresults from the velocity
results of the Biberman method based on B (dashed ¢y, of the Ng molecules in the beam prior to the dissocia-

curvg and the corrected FP extrapolation, E@7) (solid  tion and the velocity pp acquired in the dissociation:
curve, does not exceed 10%. This latter value is a good

estimate of the accuracy of formu(a?). v=6v,+ vaﬁ (40)
V. EXCITATION DUE TO RADEXT FROM EAST The photofragment angular distributicﬁ(ﬁ) is represented
Na(3ps,) PHOTOFRAGMENTS to a good approximation by a Sifis, function(see Sec. Il A

. o in Paper J): P(~ﬁ)~1—(ﬁ~éz)2. We relaten to the recoil
So far we have considered photon emission and absorp;. . . L
. o : direction of the excited photofragments. Since the emission
tion processes within the system of slow sodium atoms for . : . N
) : . rofile, Eq. (39), is a function of the scalar product-v

an arbitrary opacity of the beam. In the present section wg ~ . _ _
shall apply the above theory to the specific experimental con= —vy C0S6—uvpp(n-N), it is convenient to introduce a new
ditions of Paper I. The relatively small opacity of the beam,coordinate systenfx,y,z} with the newy axis pointing in
{,R=<koR=0.37, simplifies the analysis of radiative excita- the direction of— n (see _Flg- 2 This is done_: in two steps by
tion transfer considerably because it allows an expansion deuler transformation. First, thix,z} plane is rotated by an
different photon propagation factors into series of the smalfngle¢ around they axis:{x,y,z}—{X,y,z}. Then thely,z}
parameteri,R. plane is rotated by an angle around thex axis: {X,y,z}

The purpose is to determine the extent to which photons~{%,¥,2}. In the new coordinates, the vectey has the
emitted by fast Na(Bs,) photofragments lead to excitation COmponentdcose sin 6,cose cosd,—sing}. In spherical co-

of Na(3s,,,) atoms from the primary beam. In order to de- ordinates{p, #} regarding the photofragmentation direction

termine the number of slow excited Naiﬁz) atoms created —ﬁ), Where“ﬁ; has the Componen(s;osﬁé,sin’éCoszb'sinpésin;b}'

in this way one must obtain the excitation functi&h enter-  the normalized photofragment angular distribution is written
ing Eqg. (11). As will be shown in the next sectidisee Eq. gg

(52)], it is sufficient to determine the value @& in the
center of photodissociation zor@py. The volumeQpp is
depicted in Fig. 2 and corresponds to a sphere of raRius
=0.1cm. In the center of this volume, — _ ~ (41)
(N-€,)=Cc0s# cose sin #+ Sin § COSp COSe COSH

~~ 3 ~ .
P(<P,0)=§[1—(n-ez)2],

| (r=0)=T d3r' G (r=0," rnt., (36 o~
v( ) nathPD V( )SV( ) fast ( ) _S|n08|n§DS|n(P.

In the new notation, Eq.39) becomes

1
G (r,f")=————=exp—«,|r—1"]), 3
()= e @Rl 1) (37) o 2r
e, (r')y=x dvy fra(vy) de [ do
w —o 0 0
S*(FzO)zf dv k|, (r=0). (39 o~ L~ ~
—o XsindP(¢,0)d(v,+vppCosh+uv, cosh),
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wheref ,,,(vy) is the velocity distribution of Namolecules 3\

in the beam prior to the dissociatipsee Eq(4)]. Afterafew  &,(¢,0)= =
direct manipulations this equation can be reduced to the fol- UpD
lowing final form:

1—12/p2
1— %(cos’- 6 coS ¢+ sirt @)

2
UV .
—5sir? 6 cos ¢

(¢,0) A 3 fl dt B Upp
€, y -
¢ V| cosb|Avmg 4 ) -1

F( vip (v, /vpp+1)?
xXexp —

. (44)

The small values of the ratiov(/vpp)?<0.1 (with |v,)|
<Av,) suppress the dependenceesgfon the frequency.

Av2 co< 0 Since the opacityR is small, the source functio§*,
mol Eq. (43), with the emission profiles (¢, 0) given by Eqg.
1-1?) ) (44), can be expanded in series®fR in a manner similar to
X[l_ > (cog 6 cos p+sin @) that used for the calculation of the Biberman escape factor,
Eq. (20):
_—
t?sir? g cog ¢, (42 ) . 1577 Avy, 1 A
~ ~ . . . . S*(r=0)=T nanfswoR 64 +§ 2
wheret=cosf andf, is substituted by its exponential rep- UPD UpD
resentation(4).
The emission profile , does not depend on the distance n \/—EKOR("T(KOR)— 1.75+C)+---|. (45)
r'. Therefore, after integration of E¢36) overr’ in spheri- ™

cal coordinatesl® ' = (r")2dr’ de dé sin, the source func-
tion S* given by Eq.(38) is reduced to Such an expansion is valid for the same range of opacities
) (kgR<0.5) as in the case of the expansion in Exf)). Com-

S*(r= O)ZFnatn?;stiJ’ d¢fwd05in0fm dve,(¢,0) parison with the results of nL_JmericaI evaluation of Ettﬁ)_
47 Jo 0 —» shows that Eq(45) does not differ from the exact expression

by more than 3%.
x{1—ex _LR The nonuniformity of the spectral profile, becomes
J1-cos 6 noticeable at frequenciel— vo|~vpp/N and may some-

what influence the efficiency of RADEXT due to absorption
of photons at the wings of the absorption profite. To
determine this influence, the source function, E43),

) ) _ o should be calculated using the exact profilegiven by Eg.
For the reasons explained in Sec. VIA, the integration in Eq(42). Using the first-order series expansion of the exponential

(43) is not restricted to the photodissociation zddg, as in tactor on the opacityoR, a number of elementary transfor-
Eq. (38), but is performed over the entire beam volufg. mations reduces E43) to the form

Formally, it corresponds to introducing an additional factor
1/\/1—co¢ 6 into the argument of the exponential transmis- S* (r'=0)
sion factor. Such a replacement of the integration volume is
justified by the consideration given in Appendix B. LI R Avg ijl dt

In fact, the photofragment emission profig is a con- ! naflfasto Avy2 32) -a|t]J1-12
volution of a narrow profile with the widtt ~|cosé|Ave,
related to the initial velocitz distribution of molecules in the 1 o o o oo Upp
beam[velocity componentev, in Eqg. (40)] and a broad XJlldt(3_t — 3t ex 2Ap2 2] (46)
profile with the width\ ~*vpp due to the velocity acquired
by fragments in the dissociatidwelocity component pDﬁ with
in Eq. (40)]. This convolution is complicated by the fact
that the velocity distribution is anisotropic with respect to , AvitAv,
the angular variables. Efficient excitation of slow Na{3) veET
atoms from the primary beam occurs at frequencies
close to the center of the absorption profidg, Eq.(6), i.e.,  This equation shows that the properties of RADEXT are de-
for atoms with velocitiesv,=(v—vg)\ € (—|cosb|Avy, termined by a new effective mean velociyw. This new
|cosflAv,y). Evidently, these frequencies belong to the cen-variable arises due to the combination of the absorption pro-
ter of the emission profile,,, which varies insignificantly at file «, with the emission profile,, Eq. (42), whereby the
frequencies for whichk, is high enough to ensure an effi- latter is a product of the convolution of contributions due to
cient absorption. The latter can be directly verified by evaluthe initial velocity distribution of molecules in the beam and
ating the integral in Eq(42). For photodissociation from the velocity distribution acquired during the fragmentation
vibrational levelsv”=17 the ratiov3/AvZ, exceeds the process. The large value of the ratify/ (2Av?)=5 allows
value of=9. This allows us to use the saddle point techniqueus again to use the saddle point technique for the evaluation
in the vicinity of pointt=v,/vpp, Which yields of the integrals. After a few manipulations, the final result is

. (43

VrAvy ( v, )

|cosd| | |cosé|

2 72
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expressed in a form identical with EG5), except that the " ' ' T ' '
first two terms in square brackets should be replaced as fol-

lows:
1 AvZ 1, Av
+3 2 1zt p=— (47)
Upp Upp

Equation (46) contains helpful information about the
course of the excitation process of atoms from the primary
beam by photons emitted by excited photofragments. The
integrand of Eq«(46) implies that the main contribution to
the value ofS* is due to angles9 with cosf=t=0. This
means that the main contribution to the population of the v / AV
slow Na(3p) atoms is due to photons emitted by photofrag- y
ments perpendicularly to their fragmentation velocity regard FIG. 5. Solid curve: velocity dlstrlbutloﬁ(vy)\r o0, EQ.(48), of the source
less of the direction of the fragmentation. |nd66dlca159| function in the center of the photodissociation zdig,. Dashed curve:
>0 the Doppler frequency shift due to the photofragmentainitial Maxwellian velocity distributionf (v,), Eq.(4), of ground-state at-
tion Ve|OCIty, |)\ UpDCOS(9| exceeds the absorptlon width ©ms in the beam. In the figure both functions are normalized to unity at
N~ 1Av,{cosé|. Consequently, most of the photons emitted T
by the photofragments WItH\COSt9|>O leave the primary

beam without absorption. This fact is represented by the eXf-(U )| _o deviates only slightly from the Maxwellian func-

ponentially decreasing multiplier in E¢46). The RADEXT  jgn fafv,). The widths of the distribution andf are

process is thus dominated by a#s0. Av=Av, andAv=1.19Av,,, respectively: i.e., they differ
The above-discussed broadband nature of the emissigsy only 19%. We define the widthv of any symmetrical

profile allows us to draw definite conclusions about the vevelocity distribution functionf(v) as Av?=2J dv v?f(v)/

locity dlstrlbutlonf(vy) of the source function entering the [ dv f(v).

kinetic Eq. (7). The probability to excite a slow atom with

velocity vy at pointr is proportional to the product of the \; RESULTS AND DISCUSSION

probability f,(vy) to find an atom with such a velocity and

the total intensity () of the radiation “seen” by this atom. A Total number of slow Na  (3pg,) atoms produced

This “seen” intensity depends on the Doppler frequencyby RADEXT

shift 7— vo=cosduv,/\. The profile ofl (r), Eq.(36), is not In the preceding sections we have obtained the set of

necessarily identical with the profile, given by Eq.(39).  equations necessary for the calculation of the total number

The exponential transmission factor expg|r—r’|) in Eq. Nz of slow Na(3p3/,) atoms created due to RADEXT. In

(37) implies that during the propagation of photons from thegder to obtain a numeric result describing the process under

emission point” to the absorption point they are absorbed he conditions of Paper |, Eq13) should first be averaged

in the beam volume with an efficiency depending on thelrover the normalized velocity d|str|but|of(v) [Eq. (8)] of
frequencyv. However, since the opacitygR is small, the

the source functioi®* (r,v,):
transmission factor is close to unity. Therefore the intensity

profile | ,(r) follows the broadband character of the emission L ,1J 3 x> NV ANy
profile £,, Eg. (44). Consequently, the RADEXT process NNasIow_Fnat de FS*ON(T),  N(=N(rp), (49
leads to a velocity distribution of the source function close to _

that of the ground-state atoms in the bearf(v,) N(rp) =(N,(rp))

=f, (vy). To illustrate this conclusion, we examine the ex-

pression for the velocity distribution of the source function in ~1+ V15 KOR 0, 15 (KOR)
the center of the photodissociation zonef(vy) 2 \/E 4 \/§
~fafvy)l5li=0. Inserting Eq.(44) into Eq. (36) and inte-

grating thg latter over the radius and anglap in the spheri- KO~R= KkoR| 1+ 1 _ (51)
cal coordinate systedr’,6,¢}, we obtain 0.2+ 5.47xoR+0.169 koR)?

Velocity distribution

r2

b
1— ?) , (50)

1 1—02/v2 In Eq. (50) we have taken into account that averaging the
3 (1-vy/vpp) 2 " . : 2
f(Uy)|F=0~fat(Uy)Zf dtf 1- ——,—(1+1t9) coefficients entering Eq17) yields (¢,)= ko/+2 and(¢?)
-1 —KO/\/§ We have ignored the averaging of the rescaled
2 1—exp(— ¢,R/|t| beam ragluﬁ over the distributiorf (v) and use instead the
- ——(1-1? 7 R/|tv| . (48 value ofR from Eq.(17) for v =0. Such an approximation of
Upp v

the correction factokoR does not introduce a significant
Heret=cos# and the absorption factdf, is determined by inaccuracy. The values & determined using Eq50) and
Eg. (10). The calculations showsee Fig. 5 that for the the exact expression, E@L7), do not differ by more than 6%
opacity kgR=0.37 the profile of the distribution function [see below the numeric example fd¥,(r,=0))].
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Since the source functiorS*(F) is mainly localized TABLE I. Experimental and theoretical data on the ratio of slow to fast
within the photodissociation zon@pp, Where bothS* (F) Na(3ps») atoms for photodissociation from the vibration levefs=17 and

. . . v"=23.
andN(r,) are slowly varying functions of their arguments,
the integral(49) can be approximated by the relation Nne,, /Nna
— Na, RADEXT theory RADEXT theory
N — QS (F=0) N(r,=0) v" level Experiment without HFS with HFS
Na* —s&p V)
Sow Unat 17 0.16 0.26 0.13
23 0.22 0.21 0.19

S*(f=0) N(r,=0)

= Nng: e T (52
d geometry of Paper (when the photodissociating laser is po-
Aarized perpendicularly to the beam gxikat the ratio of the
number of slow atoms produced in the RADEXT to the num-
ber of fast photofragments produced in the dissociation can

be expressed as

where we have assumed that the density, of the excite
photofragments does not vary within the photodissociatio
zone Qpp, S0 thatNye =ngQpp. Note thatngg in the

denominator on the right-hand side of E§2) cancels out
when the expression for the source functiBh(r=0) is

inserted, since the latter also contains the tefig [see Eq. Nng, — 15m\m Avy 1,
(45)]. New (rp=0)xoR—¢7 vp tap

Strictly speaking, the source functi@®f (r) extends be- Fast
yond the photodissociation zorf@pp. This is because the 2 A

. v

photons emitted by the fast Na§g,) photofragments can be +— koR[IN(kgR)—1.75+C]|, p= —
absorbed in the entire volunf®, of the beam and not only PD
within Qpp. To account for this fact, we have replaced in (53

Eqg. (38) the integration over the zorf@pp by the integration  |nserting the values of photofragment velocitiesp(v”
over the beam volumé), [see the remark just after Eq. =17)=857m/s anth pp(v” = 23)= 1065 m/s, we obtain for
(43)]. The analysis of Eq(49) given in Appendix B justifies  the ratio(53) the values of 0.26 and 0.21 for photodissocia-
such a replacement. Moreover, this analysis shows also thgbn from the levelsy”=17 andv”=23, respectively. Al-
the total number of fast Na(®,,) photofragments entering though these values are in fairly good agreement with the
Eqg. (52) does not depend on the particular shape of the phoaxperimental resultésee Table), they still show a reversed
todissociation zone, which is chosen as a sphere in the aboygndency: the theoretical ratio is larger for dissociation from
treatment. Furthermore, it does not depend on the particulahe |ower vibrational level, whereas the experimental ratio is
spatial distribution of the fast photofragments, because thgyrger for dissociation from the higher vibrational level.

termS* (F=0)/nf,= (7" =0) does not depend arf, [see It is worth mentioning that the efficiency of the
Eq. (B4)]. Therefore the assumptiorf,s= const, which was  RADEXT depends on the polarization of the photodissociat-
done when calculating the integrals in E¢88) and (36),  ing laser radiation. Formulag5) and(53) were obtained for

does not influence the accuracy of the result. Thus&2).is  the situation when the photodissociation laser is polarized
valid for realistic experimental conditions which usually in- perpendicularly to the particle beam axis. When the laser
volve an intensity distribution within the laser beam and g polarized parallel to the beam axis, the terth &) in
photodissociation zone which usually does not have a spherE = ~

cal shape. The accuracy of E&2) is only restricted by the q- (4%)~ Shoyld be replaced ) by ney) = cos¢cosd
assumption of a slow variation of the functiof(r,), Eq. —sin#sinfcose. The source function then becomes

(50), with the spatial coordinate,. Figure 3a) shows the . gwﬁ Avy 5

range of beam opacities for which E&2) is applicable: the S*(“)(fzo)zrnaﬂ?aswoRT > - 1—2P2
mean number of scattering everigslid curve must be ap- PP

proximately equal to the reciprocal of the Biberman factor 2

M (dashed curve This condition is fulfilled for opacities Tt 7"0R[|’1(’<0R)_1'75+ C]} (54)

KOR<0.5. . . . .
Under the conditions of the experiment of PapexdR This leads to an increase in the mean absorpt!or_l by a f_actor
=0.37, Av =300 M/s, Av o= 260 m/s, andAv =281 m/s, of 1.2 due to the increase of the fraction of radiation emitted

and according to Eqs50) and (51), we obtainN(r,=0) ?yl pf;)otofragments in the direction perpendicular to the par-
=2.35. In the context of Paper I, the vallér,=0) relates Icle beam axis.
to the escape factog in Eq. (1) as N(r,=0)=1/g. It is

interesting to compare the(r,=0) value with the result of B-Account for the hyperfine structure of Na

exact averaging{N,(r,=0))=2.50, given by Eq.(17). So far, we have ignored the hyperfine struct(Hi&S) of
Hence Eqs(50) and (51) can be considered as sufficiently the Na energy levels. In thep3,, state the hyperfine splitting
accurate. is relatively small, but it is not so for the ground statg 3,

Finally, incorporating Eq.(45) into Eq. (52) and ac- where the 1772-MHz separation between fhel andF
counting for the correction47), we obtain for the given =2 levels is of an order of Doppler shifts in the emission by
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(a) 2p f determined by Eq50), reduces tN™(r,=0)=1.8. This, in
2Na(3p)  —< _(2)1 oM turn, leads to a decrease of the ratio of numbers of slow and
—_ P, ) llgf)MmH{ZZ fast Na(3) atoms, sinceN(r,=0) enters Egs(52) and
o 1 (53).
L] |L Another important manifestation of the effect of HFS is
the modification it implies on the source functic®r (1
“Na(3s) 28, |V, o _ plies (
= e 1772 MHz =0). Figures @) and &c) illustrate how the broadband
S emission profiles»s(f) interact with the absorption profiles
kP = kP |cosblexp— (v— 18 (Arp|cosd))},  with F
(b) =17 =1,2. We assume that the Doppler broadening of the emis-
sion profile of fast photofragments is due to the velooipy
K, =2 /\ AVyps = 1772 MHz / K, =D the_y ac_qui_re in the dissociation_. The widty mol of the ve-
\ \/Avfsoom{z locity distribution of molecules in the beam is several times
gv/gF=2)/ Vk‘\e;({g,) smaller tharvpp and is restricted to the direction along the
: > axis. Therefore we disregard its contribution in the following
Av = 1453 MHz estimates. It means that in the evaluations§? [Eq. (39)]
we ignore the low-velocity components in Eq. (40). Fur-
-.._ thermore, we neglect the anisotropy in the photofragment
C v'=23
( )KV(F=2) K, FD angular distribution and optical pumping between the HFS
\ /\ levels of the ground state. The latter can be safely disre-
o (F=2) <X A2 Y garded because the radiation emitted by fast photofragments
&F W \\ev is very weak compared to the saturation intensity. With such
Av = 1805 Miiz M assumptions, the emission profile can be written as

FIG. 6. Hyperfine structure of Na and its influence on the efficiency of
RADEXT. (a) Hyperfine splitting of $3, and 3,,, levels and the respective )
splitting of the sodiunmD, spectral line.(b) Emission profiles;f,F) of fast 8(;:): 20pD when |V Yo |<UPD/)\1 (55)
photofragments and absorption profild§) of slow Na atoms for transitions v (F)

between P, and 3, (F=1,2) levels at photodissociation from the vibra- 0 when |v—vy ' |>vpp/\.

tion levelv”=17. (c) The same ag¢b) for the dissociation from” =23.

This equation describes a uniform frequency distribution of
fast photofragmentgsee Fig. 6a)]. Obviously, such large emitted photons within the boundarids'= *vpp/N\, where
splitting is influencing the radiation imprisonment processthe boundaries correspond to recoil of photofragments to-
and, hence, the efficiency of RADEXT. Here we shall pro-wards and backwards from the center of the photodissocia-
vide a brief insight into this problem and give a simple quan-tion zone(see Fig. 2
titative evaluation. A detailed account requires the under- In the case of photodissociation from the vibrational
standing of how the differerf sublevels of the B, state levelv”=17 withvpp=857 m/s, each emission profH;é,F),
are populated in the potodissociation process, and it will bé&=1,2, extends from the hyperfine line cenﬁéf) by Av
given in a separate publication. =+1453 MHz and does not reach the absorption frequencies

The hyperfine splitting in the excitedp3,, state is much of the other hyperfine componefgee Fig. &b)]. Therefore
smaller than the Doppler widtA vp=Av,/A=500MHz the formation of the source function via RADEXT is inde-
(Fig. 6). Therefore the B, state can be considered as apendent for both hyperfine components. The resulting effec-
single energy level, whereby we assume that in the photodidive source function is then given by the sum of source func-
sociation the=={0,1,2,3 sublevels are uniformly populated tions for each hyperfine componeng(r=0)=S; (r=0)
according to their statistical weights. The 1772-MHz hyper-+S; (r=0), whereS; is defined by Eq(45), except thatcg
fine splitting of the ground statesg,, in contrast, requires should be replaced by{? and ', by I'E)=g/8[ 4 to
that it is treated as two separate levels 1 andF=2 with  account for branching of the8,— 3sy,, transition into hy-
statistical weightg;=3 andg,=5, respectively. Therefore perfine components. Accordingly, the rat3) of numbers
the 3p3,,— 3sy, transition splits into two spectrally resolved of slow and fast excited atoms should be rewritten to account
lines [see Fig. €a)] with intensities in accordance with the for the two independent HFS contributions:
sum rules®® I, /1 ,=g, /g,= 3/5. Furthermore, the sum rules
imply that the absorption coefficient in the center of the lines

I, and |, is expressed as a fraction of the coefficieqnt Nz ‘ Npa* Nna*
given by Eq.(6): x{Y=23/8k, and x{?)=5/8k,. An immedi- N S N slow N Sow (56)
ate consequence of the hyperfine splitting is the decrease of “Nag| ¢ Nastl;  Nastl

the effective opacity of the media to the vaIu%ﬁR
=/15/8¢;R=0.19 (see Appendix C for quantitative esti-
mate$. Accordingly, the escape factd(r,=0), which is  where
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the source functio®* depends on its position in space. The

* q_ P
Na — K 157 A . .
N_S'°W =N<eﬁ>(rb:0)gF8° R 6f fat total numberN* can be directly obtained from the mean
Nefost| Upp number of scattering events, (r), using Eq.(13). The lat-
ter number describes the scattering of resonance photons un-
x| 1+ Ep2+ EKBF)R[In(KBF)R)_L?S_'_ cll. der steady—gtate cor)ditions in an atomic beam, and we have
™ expressed it analytically by means of the Fokker—Planck

(57) technique. Although this method is precise only at large
) ) opacities of the beam, an accurate extrapolation of the FP
Using Eqgs(56) and(57), we Obta'nNNaQ.OW/NNa?ast: 0.13 for solution into the region of small opacities was achieved by
v"=17. introducing a correction. In essence, this correction means
In the case of dissociation from the level=23, the  that the actual beam radius is replaced by reduced one. A
larger fragmentation velocity afpp=1065 m/s increases the mathematical justification of this procedure is provided by
width of the photofragment emission profité™ , Eq. (55,  analysis of the time-dependent radiation imprisonment equa-
to Av=+1805 MHz[see Fig. 6c)]. This shift is larger than  tion using the geometric quantization technique which was
the 1772-MHz splitting between the=1 andF=2 HFS  originally developed in Ref. 4. This method introduces a
levels, so that a fraction of photons emitted on one hyperfinguasiparticle and relates the trapping factors to dynamical
transition can be absorbed on the other. This results in apharacteristic§Hamiltonian of the quasiparticle in an infi-
increased opacity of the medium. Therefore the termhjte coordinate space. Essentially, the imprisonment problem
gex( /8 on the right-hand side of Eq57) should be re- in a finite volume of absorbing medium is reduced to the
placed bygr«o/8. Furthermore, since the term in the squarespjution of a Schidinger Eq.(27) for the quasiparticle mov-
brackets of Eq(57) containingx{’R does contribute to N0 ing in an effective potential well determined by the atomic
more than 15% of the total value under the conditions Ofbeam boundary_ Using the semiclassical approach’ the trap-
Paper | withx{'R=«§"R=0.19, we replace it by an effec- ping factorsg; are obtained as quantized eigenvalues of the

tive value ngﬁ)R common for both HFS components. Sum- quasiparticle Hamiltonian.
mation according to Eq56) then yields The above theory considers ideally collimated beams
Nt B 150 Av 1 and neglects any.deviation of the p_article velocity vectors
slow =NE(r,=0) xR at = p2 f_rom the beam axis. The effects qf f_|n|te but_ small colllmr_al—
Nng: o 64  vpp 4 tion anglesd occurring under realistic experimental condi-

tions become noticeable at large beam opacities. In our
theory these effects can be quantitatively accounted for by
introducing a diffusion mechanism of excitation transfer be-
. . tween the atoms belonging to different subensembigs
Inserting the corresponding values we Obtmﬂaéow/ NNa?ast with fixed velocitiesv. The velocity conservation within a
=0.19 forv”=23. Comparing the obtained values with the chosen subensembi, is similar to the conservation of fre-
experimental datésee Table), one can see that the account quency during scattering of light in a monochromatic scat-
for the hyperfine structure Correctly reprOduceS the tendenC‘béring medium. The theory of M||r}eant|c|pates that under
observed in the experiment, with the ratio being smaller folsych conditions the escape factors are proportional to the
v"=17 and larger fon”=23. Note that the increase in the square of the opacity of the mediumgy~ (koR)2. This is
ratio forv” =23 is explained solely by the fact that the frag- represented by the last term on the right-hand side of Eq.
mentation velocity has become large enough to shift thesp). The migration of excitation among different suben-
emission profile as far as the hyperfine splitting of thesemples=, due to the radiative excitation transfer is similar
ground state. A further increase in the fragmentation velocityg the frequency diffusion in spectral lines known in the con-
due to increased” does not lead to any further increase in yentional radiation imprisonment treatments as partial fre-
the RADEXT efficiency as soon as both hyperfine transitiongyency redistributiorisee Ref. 17 for detailsIn the media
frequencies are covered by the photofragment emission. Ine thermal vapors or poorly collimated effusive beams the
stead, a monotonic decrease is expected because of the ‘E(Change with photons among the subensemBlesbe-
crease {-1lvpp) in the spectral density of the emission in- comes very efficient and a complete frequency redistribution
tensity. dominates. Under such condition the Holstein's layy
~ kR applies®® reducing considerably the efficiency of the
radiative excitation transfer. An appropriate modification of
geometrical quantization technique allowing the analytical
In the present paper we have provided a theoretical dedescription of radiation imprisonment in beams wiih~0
scription of radiation trapping in collimated atomic beams. Itis possible on the base of methods developed in Refs. 27
shows how the effective lifetime of an ensemble of atomsand 31.
relates to the natural decay rdigy. The trapping factogg, We have applied the developed theory of radiation im-
which contains quantitative information about the increase oprisonment in beams to explain the recently observed phe-
the effective lifetime in an optically thick medium, depends nomenon of radiative excitation transf@) discussed in Pa-
on a number of experimental conditions. Equati@8) im-  per I. In this process, the photons emitted by fast excited
plies that the total number of excited atorh; , created by photofragments excite atoms from the primary beam with

2
+ g kORI IN(«FMR) —1.75+ C]} . (598

VIl. CONCLUSION
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astonishing efficiency, leading to considerable changes in thhe vector’, and¢’ being the angle between tiyé axis and
velocity distribution of excited atoms after the photodisso-the projection off’ on the{x’,y’} plane. Such a choice of
cion. Using the theory described in this paper, we haveoordinates allows one to obtain the simplest representation
shown that such redistribution of the velocities of excitedof both the phase factap,x’+p,z’ =|p|r’ cosé’ and the
atoms can be well explained by the consequences of radidactor cos#=sin 8’ cose’ which are entering the exponent in
tion trapping. In particular, an interesting conclusion follows Eq. (25) and the kerneG, Eq. (10). With the above coordi-
from the excitation source function in Sec. V: the major con-nates, the integration of E(R5) over the radial coordinate
tribution to the excitation of atoms from the primary beam isreduces it to the form

due to the photons emitted by photofragments perpendicu-

larly to their fragmentation direction, whereby this statement V(F)=1- i j” i [P7

. . o ; p)=1 do’ sing de

is valid regardless of the direction of the photofragmentation 47 Jo 0

direction.
We have shown that in order to correctly reproduce the % 1
experimental observations, the non-negligible hyperfine 1+p2/ {2 sir? 0’ cog 0’ cog ¢’
splitting of the Na ground state should be taken into consid-
eration. Comparison of the results showed an excellent p=/pi+p-. (A1)

agreement of the predictions of our theory with the experi- ) o )

mental data of Paper I. The effect of hyperfine structure on  1he integral over’ is given in Ref. 23:
radiation imprisonment has not yet been duly considered in . 1 5

the scientific literature. A detailed study dealing with this f do’ — ™ ,
matter is in progress and will be reported elsewhere. In con- 0 1+N2cod ¢’ J1+\?
clusion, we emphasize the importance of a proper account of ) .

the radiation trapping phenomenon in any experiment inSC that representatioil) is equal to formulg26).
volving atoms in resonance states, be they among the initial

reactants or the reaction end products.

APPENDIX B: DERIVATION OF EQ. (55)
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APPENDIX A: FOURIER TRANSFORM Inserting Eqs(36), (37), and(38) in the above equation, the
OF THE RI EQUATION IN AN INFINITE BEAM integral valueS* of the source functio®* (r) is obtained by

In the GQT, we must consider the spectral problem delintegrating the emission term over the photodissociation vol-
scribed by Eq(23) for a model beam with infinite radiuig ~ UM€ Qpp and the absorption term over the beam volume
=, We are interested in the action of the Rl operazqr, b
which is determined by the integral term of E§), on the o ®
mode;5(r) = exp(p,x+ip,2). Two conditions allow the sim- s* =Fnatf dvf d3r k (r—r")
plification of the corresponding Fourier integrél) G, is a T
convolution-type operator regarding tHe,z} coordinates s, . I
and(ii) the modes of interest do not dependyorfrrom (i) it XL d>r’ G (r,r)e, (r' —rng(r’). (B2)
follows that the modesbﬁ(F) are eigenfunctions of the op- PP
erator |-G, . Their eigenvalues are given by the Fourier Importantly, the emission profile,,, Eq. (39), and the ab-
transformV(p), Eg. (25), of the kernelG, , Eq. (10), over  sorption profilex,, Eq. (5), depend on the direction be-
the{x’,z'} plane, while conditiortii) implies that this trans- tween the points’ andr, but not on the spatial positions of
form does not depend on the coordingtd=or convenience, r orr’ in the beam. This is a consequence of two properties
we choose the latter as=0 (see Fig. 2 of the considered experimental situatidn: the distribution

In the evaluation oV (p), Eqg. (25), it is convenient to  of the ground-state atoms in the beam is to a good approxi-
introduce a new coordinate system,y’,z'} which is cen- mation homogeneous andi) the velocity distribution
tered in the photodissociation zofsp (Fig. 2) with the z’ fras(v) of the Na(33,) photofragments does not depend on
axis pointing along the direction of the momentum the intensity of the photodissociation lagereak excitation
={px,p;;- We then determine spherical coordinateslimit). The latter assertion is important because the intensity
{r’,¢’,0'} with ¢ being the angle between tlzé axis and  varies across the laser beam diameter.
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Equations(5) and (39) imply that the spectral coeffi- photons on two well-resolved hyperfine transitions to Ehe
cientse, and «, are symmetrical functions of spatial coor- =1 andF=2 levels of the ground state with relative prob-
dinates. Therefore, after changing the order of integrationabilities ge/8. The radiation diffusion in the beam is there-

Eqg. (B2) can be rewritten in the form fore described as two independent imprisonment processes
o with different partial absorption coefficiemé)':) correspond-
S* :FnaJ d3r/ nE (1D (r"), ing to each of the hyperfine transitions.

Qpp Using the kernel given by EqC1), the equation de-

R o . o L scribing the mean number of scattering evehl§Tf>(F), un-
‘I’(f’)=f de d® G (F,r")k,(F=T")e,(I'=F). (B3)  der the conditions of resolved HFS of the ground state be-
B comes

The dimensionless functio®(r’) has a meaning of some
generalized escape factor. The properties of functions of this
kind have been studied in Refs. 21 and 27, where it was
shown that their dependence on the spatial coordinates is
very similar to that for the Biberman factdl 4, which is  The solution of Eq(C2) can be found using the approach
determined by the expression in the square brackets of Edptroduced in Secs. lll A and IV D. First, the Fokker—Planck
(18). At small opacities, the functio®@(r’) varies slowly —approach is used to fintl® at large opacities, and the
within the beam volume, which allows us to séi(r’) result is then extrapolated into the region of small opacities.

NEf(F) — f &' GE(F FHNEI()=1.  (C2)
Qp

=®(r'=0). Equation(B1) can thus be reduced to The Fokker—Planck method is manifested by Eip) with
N(r =0 boundary conditiong16), whereby we keep in mind the
Nuw = &3’ n* (F) D =0 (rp=0) asymptotic propertie$Egs. (32) and (33)] of the Fourier
NaI r nfas{r ) (r ) r ’ (eff)
slow PD nat transform VM (p) of the kernelG!*" given by Eq.(25).
B " (B4) Using Egs.(25 and (26) and the definition of the kernel
@(F’=0)=Fnatf dyf d3r G (" =0)k (e (r). given by Eq.(10), the functionV(¢™ for an absorbing me-
e Sy dium with non-negligible HFS splitting can be written as

The exact representation of functioi(F’=O) coincides

with the source function in Eq52), S*(r=0)/nf,=®(r’ VEN(p) = §V<§T) + §V §5>

=0), provided that integration over the photodissociation 8 \5 8 13

zone Qpp in Eq. (36) is replaced by integration over the

beam volume&, . This correspondence justifies the replace- P=pl{,= P N (C3
ment of Qpp by Q, when evaluating the integrals in Eq. Ko €XP(—v?/AvZy)

(43). It is well seen from the above derivation that the total
number of slow excited atom$\1,\,l.,1*I , relates to the total
slow

number of fast photofragmenﬂNNa;wast, whereby this relation
does not depend on the spatial distributionndf,(r’) and T)Z(S 8) ( 38 )
=V ,

for all values of its argument. Using E@2), which implies
that at large opacitie¥(p)=p?/15, we obtain

the shape of the photodissociation zdigy. Hence it does V(eﬁ)(5)|bﬂoz 15 §+ 3 5\/?5
not depend also on the intensity profile of the photodissocia-

tion laser.
on_ V15
Ko— Ko =g~ Ko- (C9
APPENDIX C: EFFECT OF HFS According to the definition op in Eq. (C3), the modification
ON RADIATION IMPRISONMENT of argument of the functiol in Eq. (C4) is equivalent to the

S‘replacement of the absorption coefficiety for a medium
without HFS by the effective absorption coefficier™ .
Note that in Eq.(C4) the functionsv(¢™(p) and V(p8/y/15)
are equal to within 4% or less for all valuesff interest.
Since the imprisonment equations with HFS are uniquely
determined by the functiokr® [see Eqs(27) and (31)], it
Is possible to account for the HFS splitting of the ground

Under the conditions considered in this study, the HF
of the upper level B, is not resolved, but the lower level
3sy), is split into two spectrally resolved componeiits- 1
and F=2. Hence the imprisonment of radiation within the
ensemble of slow Na(g,,) atoms occurs on two different
transitions. This requires a proper modification of the kerne
entering the integral term of the imprisonment Eg). and ) : g e
Eq. (14) describing the mean number of scattering eventsState by replacing«,R with the effective opacityxy™'R
N,(r). Using the sum rules for the HFS spectfaye can =(V15/8)xoR.
rewrite the kernel, of the imprisonment Eq(9) as

Gf’eﬁ)(r’r,): %G(’fl)(r’r,)_{_ ng)Z)(r,r’), €D 1E. A. Milne, J. London Math. Sodl, 40 (1926.

(F) : : : ; ; 2T. Holstein, Phys. Rewr2, 1212(1947); 83, 1159(1951).
whereG,™ is given by Eq.(10) in which «q is replaced by SL. M. Biberman, zh. Esp. Teor. Fiz17, 416 (1947,

F ; ; ; eff) e o :
Kg ) _The_mtegral in Eq(9) with ke_m9|G§) )(r,r’) descr'be_s “N. N. Bezuglov, A. F. Molisch, A. N. Klyucharev, F. Fuso, and M. Alle-
the situation when the slow excited Ngf(s,) atoms emit grini, Phys. Rev. A57, 2612(1998.
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