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II. Theory of radiation trapping in collimated beams
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We have developed a theory of resonance radiation imprisonment in collimated atomic beams.
Treating the integral master equation describing imprisonment as a generalized wave~Schrödinger!
equation and using the geometrical quantization technique for its solution, we obtained analytical
representations for the effective radiative lifetime, mean scattering number, and trapping factors. We
apply this theory to explain the recent observation of a dramatic velocity redistribution of excited
atoms by radiative excitation transfer after the photofragmentation of Na2 . In this process, the fast
Na(3p) photofragments transfer their excitation energy efficiently via radiation to the abundant
Na(3s) atoms from the primary particle beam. The influence of the hyperfine splitting of the ground
state of Na atoms on this process is discussed. The ratio of the number of Na(3p) atoms produced
by the radiative excitation transfer to the number of Na(3p) photofragments was found to be 0.13
and 0.19 for photodissociation of Na2 molecules in the vibrational levelsv9517 andv9523,
respectively. This is in good agreement with the corresponding experimental values of 0.16 and
0.22. © 2003 American Institute of Physics.@DOI: 10.1063/1.1605378#
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I. INTRODUCTION

Trapping of atomic resonance radiation in vapor~called
also radiation imprisonment! was first described by Milne,1

Holstein,2 and Biberman3 in the first half of the last century
If an excited atom is surrounded by other atoms of the sa
species in the ground state at high enough densities, the
nance radiation will be absorbed and reemitted many tim
before it escapes from the volume occupied by the ato
The successive reabsorption and reemission of photons
crease the effective radiative decay rateGeff of the ensemble
of atoms in the sample compared to the spontaneous d
rateGnat:

Geff5gGnat, ~1!

where g is a dimensionless parameter, the escape fac
which can be regarded as the reciprocal of the numbe
emission and absorption events before the escape. Th
cape factorg depends on a number of experimental con
tions, like the number density and velocity distribution
absorbing atoms, the spectral line shapes, and the geom
of the region in which the atoms are confined. Although
radiation trapping has been studied for about 80 years,
complexity of this process has not allowed an adequate
scription except for a limited number of idealized geo
etries, like slabs, cylinders, or spheres1–7 assuming a homo
geneous angular distribution of atom velocities.

At first glance it may seem that the density in atom
beams is too low to cause radiation trapping. However
this work and the preceding one we show that this is not
7090021-9606/2003/119(14)/7094/17/$20.00
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case. In atomic beams, the quantitative estimates of the
diation trapping are complicated by the inhomogeneity in
velocity distribution~and, hence, the spectral line shapes! of
atoms in the beam. This inhomogeneity causes difficultie
the mathematical description of the phenomenon.8,9 For this
reason radiation trapping under atomic beam condition
poorly presented in the literature.

An important implication of radiation trapping is the in
crease of the effective lifetimeteff of an ensemble of excited
atoms compared to the spontaneous lifetimetnat of a single
isolated atom. However, this is not the only consequenc
be considered. In the context of photodissociation proces
an earlier study10 considered radiation trapping in a vap
cell as a process affecting the measurement of absolute
tensity of the fluorescence emitted by excited photofr
ments. An experiment on molecule–atom collisional ene
transfer11 has qualitatively shown how the radiation trappin
changes the spatial distribution of excited atoms in a re
nance state in an effusive molecular beam. Yet anot
study12 has demonstrated that radiation trapping plays
dominant role in the thermalization of velocity-selected e
cited atoms in thermal vapors. Probably the most spectac
manifestation of radiation trapping is the recent experimen
observation of a dramatic velocity redistribution of excit
atoms after a photodissociation process, which is descr
in the preceding publication13 ~hereafter referred to as Pap
I!. In this study Na2 molecules in a supersonic beam we
selectively prepared in single excited rovibronic levels of t
electronic ground stateX 1Sg

1 and photodissociated by ab
4 © 2003 American Institute of Physics
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7095J. Chem. Phys., Vol. 119, No. 14, 8 October 2003 Velocity redistribution. II
sorption of a photon from a fixed frequency laser via t
B 1Pu state:

Na2~X 1Sg
1 ,v9J9!1hn→Na2* ~B 1Pu!

→Na* ~3p3/2!1Na~3s1/2!1DEkin .

~2!

The velocity distributions of the Na(3p) photofragments
were measured using an ion imaging technique. This ph
dissociation process produces Na(3p) and Na(3s) fragments
with well-defined kinetic energies depending on the inter
excitation of the Na2 molecule prior to dissociation and th
energy of the absorbed photon. The experiments show
however, that besides the expected fast Na(3p) atoms a rela-
tively large fraction of ‘‘slow’’ Na(3p) atoms is also pro-
duced. Here ‘‘slow’’ means that the atoms maintain their i
tial velocity in the beam, but do not acquire addition
kinetic energy. In particular, their velocity component pe
pendicular to the molecular beam axis remains small. T
ratio of ‘‘slow’’ to ‘‘fast’’ Na(3 p) atoms was measured to b
0.16 and 0.22 for dissociation of Na2 in vibrational levels
v9517 andv9523, respectively. This observation was inte
preted as a consequence of radiative excitation transfer f
the ‘‘fast’’ Na(3p) photofragments to Na(3s) atoms in the
primary particle beam:

fast Na* ~3p3/2!1slow Na~3s1/2!

→fast Na~3s1/2!1slow Na* ~3p3/2!. ~3!

We shall hereafter refer to this process asradiative excitation
transfer ~RADEXT!.

The scope of the present paper is twofold. First, we p
vide a detailed analytical description of radiation impriso
ment ~RI! in collimated atomic beams. Second, we demo
strate how this phenomenon implies remarkable change
the apparent translation energy distribution of excited spe
after a unimolecular fragmentation process. Analysis of
under the particular conditions of the experiment descri
in Paper I shows that the observed velocity redistribution
excited atoms can indeed be quantitatively described.

The paper is organized as follows: In Sec. II, the spec
absorption coefficient for a highly collimated atomic beam
derived and the consequences of the photon emiss
absorption sequence are discussed. It is shown that radi
trapping does not change the velocities of slow excited ato
in the primary beam. This result allows us to separate
spatial and velocity variables in the master equation desc
ing the dynamics of the excited states. In Sec. III, the esc
factors are evaluated under steady-state conditions.
equation for the mean number of scattering events of a p
ton initially emitted at an arbitrary point in space is deriv
using different methods which allow an estimation of t
accuracy of the calculations. The expressions obtained
the escape factors allow us to find the total number of exc
atoms for an arbitrary spatial distribution of the excitati
sources. Section IV analyzes the Holstein trapping fac
gj . They are connected to the effective lifetimes of mod
~eigenfunctions! of the imprisonment equation. The spectr
problem, which includes the determination of the over
Downloaded 19 Nov 2008 to 131.114.129.199. Redistribution subject to A
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spectrum of eigenmodes and the radiative decay constan
solved using thegeometrical quantization technique~GQT!
first described in Refs. 4 and 14. This approximation is
rather universal and yet accurate analytical method wh
can be used for the treatment of a wide class of integ
differential transport equations. We exploit then GQT~in
Sec. IV D! to reduce the RI master equation to an equation
Fokker–Planck~FP! type. Section V describes the excitatio
source function formed due to the emission of photons
fast Na(3p) photofragments. Section VI is devoted to th
RADEXT processes. We apply the theory to the experim
described in Paper I and discuss the influence of hyper
splitting of Na energy levels on RADEXT. Analytical expre
sions for the ratio of the number of slow Na(3p) atoms
produced in the RADEXT process~3! to the number of fast
source Na(3p) atoms which are produced in the photodiss
ciation are obtained. The results are compared to the exp
mental data of Paper I. In Appendix A, the details of t
Fourier transformation of the RI master equation necess
for the calculations by GQT are given. In Appendix B, th
derivation of equations describing the relation between
total number of slow Na(3p) atoms formed due to RADEXT
and the number of excited photofragments is given. T
derivation provides also a justification of some of the a
sumptions which are made in the present paper. In Appen
C, the effect of hyperfine splitting of Na ground state
radiation imprisonment is considered. For readers mainly
terested in ready-to-use analytical formulas for calculation
trapping factors, Secs. II, III, and VI are most relevant.

II. FORMULATION OF THE PROBLEM

The extent of radiation imprisonment is determined
the absorption coefficient of the mediumkn . The latter de-
pends on the velocity distributionf (vW ) of absorbing atoms.
Suppose the medium is a collimated supersonic beam.
illustration we choose the parameters of a Na/Na2 beam used
for the experiments in Paper I. The flow velocity of atoms
the beamv f51340 m/s, with a full 1/e widths of the velocity
distributions of ground-state atoms and molecules along
beam axis ofDvat5300 m/s andDvmol5260 m/s, respec-
tively. In the direction perpendicular to the beam axis t
atoms are collimated to a divergence of 0.8°, which cor
sponds to a velocity spread of 9 m/s. Such small transve
velocity spread allows us to assume for further mathemat
analysis that the beam is ideally collimated: i.e., we negl
the deviation of the velocity vectors of atoms from the p
ticle beam axiseW y . The normalized velocity distributions o
Na(3s) atoms and Na2 molecules in the beam thus becom

f i~vW !5d~vx!d~vz! f i~vy!,

f i~v !5
1

ApDv i

expS 2
v2

Dv i
2D , ~4!

E
2`

`

dv f i~v !51,

wherei 5$at,mol% stays for atoms or molecules and the sy
bol d denotes the Dirac function, while velocityvy is mea-
sured relative to the mean flow velocityv f of the beam. Note
that only this relative velocity is of importance for the fo
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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7096 J. Chem. Phys., Vol. 119, No. 14, 8 October 2003 Bezuglov et al.
lowing theoretical treatment; therefore, the flow velocity
hereafter disregarded. Furthermore, we assume that the
tral absorption and emission profileskn and wn are deter-
mined by the Doppler profile, which is justified since th
characteristic Doppler frequency shiftDnD;Dv/l is much
larger than the natural linewidthGnat. The absorption coef-
ficient for a photon of frequencyn moving in the directionnW
is then given by the relation15

kn5s̄~r !GnatN0

c

n0
E d3v f at~vW !dS nW •vW 2

n2n0

n0
cD ,

~5!

s̄~r !5
l2

8p

ḡ3/2

ḡ1/2
,

wherec is the speed of light,n0 andl are the frequency and
wavelength of resonance photons in the line center,ḡ1/252
and ḡ3/254 are the statistical weights of the lower 3s1/2 and
upper 3p3/2 levels, respectively, andN05231011cm23

gives the density of the absorbing Na(3s1/2) atoms. Using
the distribution~4!, Eq. ~5! reduces to

kn5
k0

ucosuu
ApDvat f atS vn

ucosuu D , vn5
n2n0

n0
c,

~6!

k0[
l3

8p3/2

ḡ3/2

ḡ1/2

Gnat

Dvat
N0 .

Here u is the angle between the directionnW of the photon
propagation and the beam axisy ~see Fig. 1! and k0

53.7 cm21 is the Doppler absorption coefficient at the lin
center atl5589.16 nm~the conditions of Paper I!. From Eq.
~6! it is clear that the absorption at the center of line is la
in directions perpendicular to the particle beam axis beca
the width DnD;ucosuu of the Doppler profile decrease
when the angleu increases from 0° to 90°. This effect ou
weighs the relatively small opacityk0R50.37 of the beam
with radius R50.1 cm, so that radiation imprisonment b
comes noticeable even under the supersonic beam co
tions.

The generalized master equation describing the ev
tion of the densitynslow* (rW,vy ,t) of excited resonance atom
is given by Holstein2 and Biberman:3,16

]

]t
nslow* ~rW,vy ,t !52~Gnat1W!nslow* ~rW,vy ,t !1S* ~rW,vy!

1GnatĜnslow* ~rW,vy ,t !. ~7!

The excited atoms decay due to spontaneous emission~rate
Gnat) and collisional quenching~rateW!. In what follows we
neglect the quenching rate unless indicated otherwise.
densityn* is a function of both the location of atoms an
their velocity. For collimated beams the analysis of the
locity distribution simplifies considerably. As will be show
below @see the discussion after Eq.~45!#, the RADEXT from
fast Na(3p3/2) photofragments creates the initial ensemble
slow Na(3p3/2) atoms determining the excitation sour
functionS* . The velocity distribution of the source function
f̃ (vy), appears to be very close to the velocity distribution
ground-state atoms in the beam:
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S* ~rW,vy!5S* ~rW ! f̃ ~vy!, f̃ ~vy!. f at~vy!. ~8!

The source functionS* (rW)5* dvyS* (rW,vy) describes the
external excitation rate@cm23 s21#. The factorization~8! is
valid for most of the practical situations, like excitation du
to laser irradiation or collisions, but the velocity distributio
f̃ (vy) depends on the specific parameters of the experim

The last term in Eq.~7!, Ĝnslow* , describes the imprison
ment of radiation within the volumeVb occupied by the
absorbing atoms. Without imprisonment, Eq.~7! reduces to a
conventional rate equation where the excited atoms deca
a spontaneous decay rateGnat. When Ĝnslow* becomes non-
negligible, RI leads to a smaller effective decay rateGeff @see
Eq. ~1!#. We now seek an explicit representation of the im
prisonment termĜnslow* . Suppose a slow Na(3p3/2) atom at
point 1 ~see Fig. 1! moves with the velocityvy

(1) and emits a
photon in the directionnW . Due to the Doppler shift with
respect to an atom absorbing the photon at point 2, we
quire the conservation of the velocity projection onnW :
(vy

(1)eW y)nW 5(vy
(2)eW y)nW , i.e., vy

(1)5vy
(2) . In other words, the

photon reabsorption in the system of slow Na(3p3/2) atoms
does not change the velocityvy of the atoms involved. The
frequency of the photons seen by the atoms isn5n0

FIG. 1. Illustration of the imprisonment of resonant radiation within
ideally collimated atomic beam. The Doppler effect implies that the pho
emitted in the directionnW by atom~1! moving with the velocityvW y

(1) along
the particle beam axis can be absorbed only by such atom~2! whose velocity
vW y

(2) has the same projection on the direction ofnW as the velocity of the
emitting atom~1!: vW y

(1)nW 5vW y
(2)nW . This condition is valid for each pair of

emission-absorption events.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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7097J. Chem. Phys., Vol. 119, No. 14, 8 October 2003 Velocity redistribution. II
1n0c
21(vyeWy)nW5n01cosu vyl

21 and is thus strongly depen
dent on the direction of photon propagation. Due to the c
servation ofvy during successive absorption processes~see
Fig. 1!, the formation of slow excited atoms can be cons
ered separately for each subensembleJv with fixed velocity
v5vy . Taking into account the factorization~8!, we rewrite
Eq. ~7! in the form

]

]t
nv* ~rW,t !52Gnatnv* ~rW,t !1GnatE

Vb

d3r 8 Gv~rW,rW8!

3nv* ~rW8,t !1S* ~rW !,

nslow* ~rW,vy ,t !5nvy
* ~rW,t ! f̃ ~vy!, ~9!

Gv~rW,rW8!5
1

4purW2rW8u2
zv

cosu
expS 2

zv

cosu
urW2rW8u D ,

zv5k0 expS 2
vy

2

Dvat
2 D . ~10!

The kernelGv of the integral operatorĜnslow* gives the prob-
ability that photon emitted at pointrW8 will be absorbed at
point rW. The effective absorption coefficientzv /cosu for the
subensembleJv is derived from Eq.~6!, while the angleu is
measured between the vectorrW2rW8 and the beam axisy.
Note that we deal with population of excited states and
not interested in polarization17 and alignment18 phenomena.
As was shown in Refs. 18 and 19, the polarization proper
of the radiation do not noticeably influence the excited-st
density in the vapor provided no special efforts are und
taken for preparing strong atom alignment. Mathematica
ignoring polarization effects corresponds to angular isotro
emission of photons and results in the factor 1/4p entering
expression~10! for the kernelGv .

III. ESCAPE FACTORS UNDER STEADY-STATE
CONDITIONS

When steady-state conditions apply~as in the case of the
experiment described in Paper I!, the RI master Eq.~9! sim-
plifies significantly:

nv* ~rW !2E
Vb

d3r 8 Gv~rW,rW8!nv* ~rW8!5
S* ~rW !

Gnat
. ~11!

It will prove beneficial to write the solution of Eq.~11! in an
operator notation,nv* (rW)5Gnat

21( Î 2Ĝv)21S* (rW), and con-
sider the total numberNv* of excited atoms in the ensemb
Jv :

Nv* [E
Vb

d3rnv* ~rW !

5
1

Gnat
E

Vb

d3r ~ Î 2Ĝv!21S* ~rW !

5
1

Gnat
^1u~ Î 2Ĝv!21uS* &. ~12!

Here, the scalar product of two functions,̂guh&
5* d3r g(rW)h(rW), is introduced. The symbolu1& denotes a
Downloaded 19 Nov 2008 to 131.114.129.199. Redistribution subject to A
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functiong identical to unity, i.e.,g5u1&⇔g(rW)[1. Since the
operatorĜv is Hermitian ~symmetrical with respect to its
arguments!, Eq. ~12! has an equivalent representation

Nv* 5
1

Gnat
^S* u~ Î 2Ĝv!21u1&5

1

Gnat
E

Vb

d3r S* ~rW !N̄v~rW !,

N̄v~rW ![~ Î 2Ĝv!21u1&, ~13!

whereN̄v can be interpreted as the mean number of scat
ing events experienced by a photon initially emitted at
point rW ~Ref. 15!. Indeed, if we restrict the excitation~with
the total intensityS0* @s21# to a single pointrW5rW0 , the
source function becomesS* (rW)5S0* d (3)(rW2rW0), whered (3)

is the three-dimensional Dirac delta function. The total nu
ber of excited atoms,Nv* 5S0* Gnat

21N̄v(rW0), is then determined
by the effective radiative lifetime:Nv* 5S0* teff . The amount
by which teff5tnatN̄v(rW0) exceeds the natural lifetimetnat in
a transparent medium is thus determined by the num
N̄v(rW0) of photon captures. Calculating the total number
excited atoms by integration over the beam volume acco
ing to Eq. ~13! is simpler than by solving the integral Eq
~11!.

Equation ~13! implies that N̄v satisfies a relation (Î
2Ĝv)N̄v(rW)51, i.e.,

N̄v~rW !2E
Vb

d3r 8 Gv~rW,rW8!N̄v~rW8!51. ~14!

Because of the cylindrical symmetry of the kernelGv , the
mean scattering numberN̄v(rW) depends only on the distanc
r b of point rW from the axis of the particle beam, so th
N̄v(rW)[N̄v(r b). Let us determine the mean scattering nu
ber N̄v(r b). We shall use for this purpose two independe
approaches which should allow the assessment of the a
racy of estimates.

A. Mean number of scattering events N̄v at large
opacities: Fokker–Planck technique

The kernelGv , Eq. ~10!, is an exponential function o
space coordinates which implies a finite mean free path va
for a photon imprisoned in the systemJv . Therefore it is
justified to use the Milne approach1 for transforming the in-
tegral Eq.~14! into a differential equation of Fokker–Planc
type.20,17 For a cylindrically symmetric medium with larg
opacity k0R@1, Eq. ~14! can be approximated by the fo
lowing diffusion problem~we refer the interested reader
Refs. 20 and 17!:

~ Î 2Ĝv!N̄v~r b!51,
~15!

~ Î 2Ĝv!N̄v~r b!52
1

15zv
2

1

r b

d

drb
r b

d

drb
.

The photons are not reflected from the boundary of
sample considered, but escape from the volume. There
the diffusion Eq.~15! must be supplemented by a bounda
condition

2
d

drb
N̄v~r b!5A15zvN̄v~r b!ur b5R . ~16!
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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The derivation of the expressions given by Eqs.~15! and~16!
is relegated to Sec. IV where a general representation o
RI equation is obtained. At large opacities, Eqs.~15! and~16!
have an exact analytical solutionN̄v

(large)(r b)50.5A15zvR
13.75(zvR)2(12r b

2R22). The method for extrapolating
N̄v

(large) to the region of small opacities is described in S
IV. In essence, the procedure consists of two steps. In a tr
parent medium (k0R→0) a photon is emitted only onc
without reabsorption. Therefore the conditionN̄v(r b)[1
needs to be fulfilled. That condition can easily be satisfied
setting N̄v511N̄v

(large). However, the discussion in Se
IV D. shows that such extrapolation alone does not ensu
satisfactory accuracy. We follow therefore a generally
cepted procedure in the treatment of RI which reduces
radiation transfer equations to a form equivalent to the
describing a Brownian-type motion of photons in the abso
ing medium.17 In this method a correction is obtained~see
Sec. IV D! by rescaling the opacityzvR with zvR̃:

N̄v~r b!511
A15

2
zvR̃1

15

4
~zvR̃!2S 12

r b
2

R̃2D ,

~17!

R̃5RS 11
1

0.215.47zvR10.169~zvR!2D .

The accuracy of this extrapolation can be examined by c
parison with results of an independent approach suggeste
Ref. 3, which is valid for small opacities.

B. Mean number of scattering events N̄v at low
opacities: Biberman method

We now solve Eq.~14! using the Biberman method.3,16,21

At small opacitiesk0R,0.5, the mean number of scatterin
events,N̄v(r b), is a slowly varying function ofr b @see Eq.
~17!#. One can therefore replaceN̄v(rW8) in Eq. ~14! by its
value atrW85rW:

N̄v~rW !F12E
Vb

d3r 8 Gv~rW,rW8!G51. ~18!

For determination of the accuracy of Eq.~17! it is sufficient
to consider the value ofN̄v at r b50, i.e., whenrW lies on the
beam axis. After introducing spherical coordinates (r 8,w,u),
as depicted in Fig. 2, the integration over the radial coo
nater 8 and azimuthal anglew yields immediately

N̄v~r b50!Meff51,
~19!

Meff5
1

2 E0

p

du sinu expS 2zvR
1

sinu cosu D .

Here Meff is the so called Biberman escape factor, wh
gives the probability that a photon emitted at the beam a
escapes from the beam volumeVb without absorption. Fig-
ure 3~a! comparesMeff

21 with the number of scattering event
N̄v(r b50), determined from Eq.~17!. Under the conditions
of the experiment discussed Paper I (zvR<k0R50.37) the
deviation ofN̄v(r b50) from Meff

21 does not exceed 10%. I
fact, the Biberman escape factor~19! can be expanded in
series of the opacity parameterzvR ~Ref. 22!:
Downloaded 19 Nov 2008 to 131.114.129.199. Redistribution subject to A
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Meff511zvRF lnS zvR

2 D211CG
2

~zvR!2

2 F lnS zvR

2 D20.51CG1¯, ~20!

whereC50.57722... is the Euler constant.23 This expansion
is accurate within the range of validity (k0R,0.5) of the
Biberman approach@see Fig. 3~a!#.

IV. EFFECTIVE RADIATIVE LIFETIMES
UNDER TIME-DEPENDENT CONDITIONS

In order to justify the use of the relations given by th
Eqs.~15!, ~16!, and~17!, we exploit another interpretation o
the mean scattering numberN̄v given in Refs. 9, 24, and 25
We demonstrate thatN̄v(r b) is closely related to the effective
decay rate of an ensemble of excited atoms. Specifically,
are interested in the survival of the initial distributio
nv* (rW,t50) of excited atoms after the termination of the e
citation at t50, which is implemented by setting@S* (rW)
[0# for t>0 @see Eq.~9!#. For convenience we substitut
nv* (rW,t50) by a distributionr(rW,t50)5ur0& normalized to
unity: *Vb

d3r r(rW,t50)51.

A. Time-dependent interpretation of N̄v„r b…

We express the solution of the master Eq.~9!, describing
the time evolution ofr(rW,t)5nv* (rW,t), in terms of a Green
function: r(rW,t)5exp@2tGnat( Î 2Ĝv)#ur0&. The probability
P(t) of finding an excited atom in the atomic beam volum
at the momentt is then given by

FIG. 2. Spherical coordinate systems used to derive the source fun
S* (rW50) due to radiative excitation transfer from fast Na(3p3/2) atoms to
slow Na(3s1/2) atoms. The photon is emitted at pointrW8 by a fast photofrag-
ment and absorbed by a slow ground-state atom at the center (rW50) of the
photodissociation zoneVPD. Using two steps of Euler transformation, th
coordinate system$x,y,z% related to the absorbing slow atoms atrW50 is
replaced by a coordinate system$x̃,ỹ,z̃% related to a photofragment atrW
5rW8 emitting a photon in the directionnW 52eW ỹ .
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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P~ t !5E
Vb

d3r r~rW,t !5^1uexp@2tGnat~ Î 2Ĝv!#ur0&,

~21!

where P(t50)51 thanks to the above normalization
ur0&. Following Ref. 26, we shall characterize the decay p
cess by a mean lifetimeteff(r0). The probability that the ex-
cited state will decay within the time intervaldt is 2dP,
where the minus sign accounts for the loss of excitation
the volumeVb . Therefore,

teff~r0![E
0

`

2dP t

5E
0

`

dt P

5E
0

`

dt^1uexp@2tGnat~ Î 2Ĝv!#ur0&

5Gnat
21^1u~ Î 2Ĝ!21ur0&.

Since the RI operatorĜv is self-conjugated, the position o
the functionsur0& andu1& can be interchanged. Together wi
Eq. ~13! we therefore obtain

teff~r0!5^r0u~ Î 2Ĝ!21u1&5tnatE
Vb

d3r N̄v~rW !r0~rW !. ~22!

Suppose the excitation was initially located at the pointrW0 :
r0(rW)5d (3)(rW2rW0). The value oftnatN̄v(rW0) has then an ob-
vious meaning. It is the average lifetime of excitation th
was initially localized at the pointrW0 . In the more genera
situation of arbitrary initial spatial distribution of excited a
oms the effective lifetime is found by integration over t
beam volume. This explains the relation of the mean sca
ing numberN̄v with the time-dependent radiation impriso
ment problems, even though the functional form ofN̄v is
determined by the steady-state Eq.~14!.

B. Holstein trapping factors and formulation
of the spectral problem

Initially, Holstein introduced the escape factorg as a
dimensionless parameter characterizing the decrease o
radiative decay rate of the ensemble of atoms due to ra
tion trapping.2 However, in later studies it became genera
accepted to use the parametersgj to characterize the increas
of the lifetime.17 One therefore needs to distinguish the e
cape factorg defined by Eq.~1! from the trapping factorsgj

used below.
The solution of Eq.~9! ~without the source functionS* )

can be expanded in the Fourier series of exponentially
caying eigenmodesnv

( j )(rW,t)5c j (rW)exp(2ljt) ~Refs. 2 and
17!. The eigenfunctions are found by substituting, in Eq.~9!,
]/(]t)→2l j , where l j are the effective radiative deca
constants~eigenvalues! of the eigenmodes. Thus, Eq.~9! re-
duces to the following spectral problem:

l jc j~rW !5Gnat~ Î 2Ĝv!c j~rW !1WVc j~rW !,

l j
215t j[tnatgj . ~23!
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The position-dependent rate constantWV represents a forma
quenching process which is introduced for the sake of te
nical convenience of further calculations. Such a proced
does not influence the above discussion sinceWV(rW)[0
within the beam volumeVb .

By definition @Eq. ~23!#, the trapping factorsgj are di-
rectly related to the effective lifetimest j of the eigenmodes
They give the number of absorption and reemission eve
experienced by a photon in thejth mode. The latter decay
with a single lifetimet j5teff„c j (rW)…. Using Eq. ~22!, the
relation betweent j and the mean scattering numberN̄v can
be written as

gj5t j /tnat5E
Vb

d3r N̄v~rW !c j~rW !Y E
Vb

d3r c j~rW !.

~24!

A full solution of the spectral problem defined by Eq.~23! in
an atomic beam can be obtained by employing the geom
cal quantization technique~GQT!.4,5,27

FIG. 3. Trapping characteristics as a function of the opacityzvR of the
atomic beam.~a! Comparison of mean number of scattering eventsN̄v(r b

50) at small opacities obtained by different methods:~1! Solid curve:
Fokker–Planck method, Eq.~17!. ~2! Dashed curve: reciprocal of the Bib
erman factorM eff , Eq. ~19!. ~3! Dot-dashed curve: reciprocal of the serie
expansion of the Biberman factor, Eq.~20!. ~b! Trapping factorg0 of the
fundamental modej 50. The solid curve~1! displays the exactg0 values
obtained from Eq.~28! using the exact functionV(p), Eq.~26!. The dashed-
dotted curve~2! corresponds to theg0 factor evaluated using Fokker–Planc
approach determined by approximation~33!. The dashed curve~3! presents
Fokker–Planck results corrected by introducing a reduced optical thickn
In the scale of the figure curves~1! and ~3! practically coincide.
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C. Solution of the spectral problem using GQT

The basic strategy of GQT lies in exploiting the analo
between the integral Eq.~23! and the stationary wave equa
tion for a classical Hamiltonian system.4 First, the spectral
problem is considered in infinite spaceV` , which in our
case corresponds to a beam with infinite radius. This is c
venient because for infinite space an exact analytical solu
is possible. Due to the cylindrical symmetry, the solutions
the integral Eq.~23! do not depend on the coordinatey as-
sociated with the beam flow direction:c j (rW)5c j (x,z).
These solutions can be represented in a simple form
propagating wavecpW (rW)5exp(ipW•rW) of a freely moving par-
ticle with momentumpW , which plays a role of a continuou
mode index. The dependence on they coordinate is elimi-
nated by settingpy50. The momentumpW 5$px,0,pz% is thus
orthogonal to the beam axiseW y . As shown in Appendix A,
the use of modescpW reduces the spectral problem~23! to a
set of simple algebraic relations

lpcpW~rW !5GnatV~pW !cp~rW !1WVcp~rW !,
~25!

V~pW !512E E E
2`

`

dx8 dy8 dz8

3exp~ ipxx81 ipzz8!Gv~rW50,rW8!,

whereV(pW ) is determined by Fourier transformation of th
kernel Gv , Eq. ~10!. According to Appendix A, its explicit
representation is given by

V~pW ![V~p!

512E
0

p/2

du sinu
1

A11p2/zv
2 sin2 u cos2 u

,

p5Apx
21pz

2. ~26!

Obviously, V(pW ) is a function of the absolute value of th
momentum p5upW u ~i.e., of the dimensionless ratiop̃
5p/zv), which reflects the azimuthal symmetry of the R
problem considered here. The integral operator induce
multiplication by the functionV(p) in Fourier space and ca
be considered as a functionV of the momentumpW . The latter
can be replaced bypW 52 i¹W in the space of$x,z% coordinates
~i is the imaginary unit!.28 The spectral problem~23! can thus
be expressed in an alternative form

l jc j~rW !5GnatV~2 i¹W !c j~rW !1WV~rW !c j~rW !. ~27!

We immediately recognize the similarity of the above e
pression with the generalized stationary Schro¨dinger equa-
tion with Planck constant\51. The ‘‘quantum’’ Eq. ~27!
describes the wave function~mode! c j (rW) of a classical sys-
tem ~the so-called associated quasiparticle4! with a uniquely
determined HamiltonianH(pW ,rW)5GnatV(p)1WV(rW). The
function GnatV(p) gives the ‘‘kinetic energy’’ of a quasipar
ticle, while the quenching rateWV(rW) corresponds to the
‘‘potential energy.’’ With such an interpretation, the effectiv
radiative constantsl j correspond to the total ‘‘energy’’ of the
quasiparticle.

In order to preserve the quasiparticle notation under
conditions of finite beam volumeVb , the spectral problem
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~23! should be extrapolated fromVb to an infinite spaceV`

~Ref. 4!. This can be achieved by employing the formal pr
cedure proposed in Ref. 14: the volumeV` is divided into
two parts, such that quenching is absent withinVb (WV

50), while outsideVb a strong quenching causes fast dea
tivation of excited states@WV(rW)5`#. This construction
solves the formulated task since all Na(3p) atoms disappea
immediately outsideVb and thus do not affect the excitatio
of atoms inside the beam. Keeping in mind the interpretat
of WV as a potential energy, it is clear that the quasiparti
is confined within a potential well with infinitely high walls
created by the atomic beam boundary. Hence the quasip
cle is trapped inside the beam volumeVb and experiences
elastic reflections from its boundary. The factorsl j thus be-
come the discrete quantized energy values of the quasip
cle.

From the semiclassical point of view, the solutions of t
wave Eq.~27!, which determine the eigenstates of the qu
siparticle, can be found by imposing appropriate quantizat
conditions, whereby it is sufficient to consider only the rad
dependence of the modes,c j[c j (r b). The quantized values
pj of the quasiparticle momentum can then be extracted fr
the Bohr–Sommerfeld quantization rule:4,28

2
pj

zv
zvR52p j 1

p

2
1DS~pj !, l j5GnatV~pj !. ~28!

Equation ~28! has the following physical meaning. Withi
the volumeVb , the HamiltonianH5GnatV(p) does not de-
pend on the spatial coordinaterW (WV50). Therefore the
quasiparticle moves freely (pj5const) within the beam and
is reflected from its surface (r b5R) or axis (r b50). The
motion is thus formally restricted to half of the beam diam
eter r b>0. The corresponding wave function~the jth mode!
has the form of a standing de Broglie wave29 with phase
pjr b1S0 . The phase of the quasiparticle jumps at each
flection. It increases byDS5p/2 at reflection from the beam
axis r b50 ~Ref. 28! and byDS(pj ) at reflection from the
beam surface4 ~see Fig. 4!:

DS~pj !5
p

2
2

2

p E
0

1

lnS V~pj !2V~pjj!

V~pj /j!2V~pj !
D 1

12j2
dj. ~29!

The quantization rule~28! defines resonance conditions fo
the existence of thejth eigenmode in a ‘‘resonator’’ repre
sented by the beam volumeVb . The ‘‘allowed’’ ~resonance!
values of the momentumpj determine the decay ratesl j via
the kinetic energy of the quasiparticle. The longest-livi
fundamental mode corresponds to the ground state wij
50. The Holsteing0 factor @Fig. 3~b!# is equivalent tog0

5(tnatl j 50)21.
Using the approximation suggested in Ref. 4, it

straightforward to evaluate the phase shiftDS(pj ) in a form
convenient for rapid evaluations:

DSapp~pj !5
p

2
@11gapp~pj !#, ~30!

where
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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gapp~p!5
1

2
p

d

dp
lnS p

dV~p!

dp D .

Since the functionV(p) depends on the dimensionless ra
p̃5p/zv , Eq. ~28! yields a system of equation
$l j (pj̃ ),xv(pj̃ )% determining the dependence ofl j on the
opacityxv5zvR in a parametric form comfortable for com
putational purposes.

D. Solution of the spectral problem
using the Fokker–Planck approach

The spectral problem~23! relates uniquely to the impris
onment operatorĜv , Eq. ~10!. Equation~27! allows the re-
placement of the imprisonment operator by its alternat
representationĜv5 Î 2V(2 i¹W ). Equation~14! for the mean
scattering numberN̄v can then be rewritten as

V~2 i¹W !N̄v~r b!51, ~31!

wherer b is the distance of pointrW from the beam axis. In the
quasiparticle terminology, which was introduced in S
IV C, the above equation identifies the integral imprisonm
operator with the kinetic energy operatorV(2 i¹W ). At large
opacities of the beam, the ratiop̃5p/zv is small, and the
behavior of the functionV(p), which is determined by the
integral ~26!, reduces to a simple quadratic power law

V~p!u p̃→05
p2

15zv
2
⇒V~2 i¹W !52

1

15zv
2

D, ~32!

whereD52 p̂25¹W 2 stays for the Laplace operator. In oth
words, the kinetic energy of quasiparticles simplifies to
usual ;p2 dependence. Therefore the wave representa

(pW→pŴ 52 i¹W ) of quasiparticles justifies the use of the F
approach for the solution of both the steady-state Eqs.~14!
and ~31! and the spectral problem~23!.

However, the asymptotic Eq.~32! does not satisfy the
requirementV( p̃→`)51, which holds for any transparen
medium with zero opacity. Indeed, ifzvR50, the photons
should be able to escape from the gas without absorption

FIG. 4. Phase factorDS entering the quantization law, Eq.~28!, and ac-
counting for photons escaping from the beam volume without reflection
its boundary. The dashed curveDSFP is the Fokker–Planck result forDS.
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all trapping factors reach the value of unity. This circum
stance can be accounted for by using an approximation

V~p!.VFP~p!

[
p2

15zv
21p2

⇒DSFP~p!52 arctanSA15zv

p D . ~33!

The spectral problem, Eq. ~23!, l jc j (rW)5GnatVFP

3(2 i¹W )c j (rW), is a second-order differential equation with
general solution in the form of standing waves,c j (r b)
;cos(pR2prb2DSFP/2), near the beam boundary. The pha
shift DSFP(p) is uniquely determined by the functionVFP via
the integral~29! which yields the exact representation~33!.
From this it follows immediately that all modesc j satisfy the
relation~16! ~whereN̄v→c j ), which we use as the boundar
condition ~16!. Note that the phaseDS(p) was derived~see
Ref. 4 for details! assuming the absence of reflection of e
caping photons from the boundary of the absorbing mediu

With the help of Eq.~33!, Eq. ~31! determiningN̄v
(FP) for

the operatorVFP is transformed to the form

p̂2

15zv
21 p̂2

N̄v
~FP!~r b!51, p̂252D52

1

r b

]

]r b
r b

]

]r b
.

~34!

This equation has a solution

N̄v
~FP!~r b!511

15zv
2

p̂2
u1&[11N̄v

~ large!~r b!,

~35!

N̄v
~ large!5

A15

2
zvR1

15

4
~zvR!2S 12

r b
2

R2D .

Obviously, the introduced functionN̄v
(large) satisfies the equa

tion 2DN̄v
(large)515zv

2 with the boundary condition~16! and
was evaluated already in Sec. III A. Thus the approximat
VFP provides indeed a proper extrapolation of the FP solut
towards zero opacity of the beam. The accuracy of calcu
tions employing the approximated functionVFP instead of
V(p) can be judged from Fig. 3~b! whereg0 factors calcu-
lated by different methods are compared. These factors
termine the lifetime of the fundamental mode and are rela
to the escape factor in Eq.~1! as g05g21. The g0 value
calculated by the FP method reaches the largest discrep
of 33% from the exact value at opacitieszvR50.2. It occurs
due to the rough approximation of the actual phaseDS, Eq.
~29! ~Fig. 4, solid curve!, by the FP phaseDSFP, Eq. ~33!
~Fig. 4, dashed curve!. The reason for the disagreement
the two phase factors can be easily seen from the appr
mation ~30!. Indeed, for a functionV(p) with a power law
dependenceV(p).a1bpg on the momentump the phase
shift is DS.p/2(11g/2). At large opacitiesp̃5p/zv→0,
and bothV(p) andVFP(p) exhibit the samep2 behavior@see
Eq. ~33!#, so thatg52 andDS5DSFP5p. In a nearly trans-
parent media, in contrast,p̃→`. This implies thatV(p)
.12bp21 @g521: see Eq.~26!# and VFP(p).12b̄p22

3~g522!. The corresponding phase shiftsDS.p/4 and

n
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DSFP.0 differ considerably at opacitieszvR,0.3 ~see Fig.
4!. Therefore it is necessary to introduce a correction to
extrapolation ofN̄v

(FP) , Eq. ~35!.
We can take advantage of the fact that at small opac

the functionN̄v(r b) varies weakly within the beam volum
and replace it with its value in the center of the bea
N̄v(r b)'N̄v(r b50). The relation betweenN̄v and the trap-
ping factorg0 of the fundamental mode can then be imm
diately established from the integral~24!: g05N̄v(r b50).
The analytically available information ong0 factors provides
an important tool for improvement of the extrapolation of F
results into the region of small opacities. We follow the co
ventional method described in the literature~e.g., Ref. 17!
and rescale the opacityzvR→zvR̃ by imposing the require-
ment g0(zvR)5g0

(FP)(zvR̃). In other words, we replace th
actual beam radiusR by the reduced radiusR̃ for which the
evaluation ofg0 factors by the FP approach becomes exa
The calculations yield results which can be quantitativ
approximated by Eq.~17!. Figure 3~b! shows that theg0

values obtained using the reduced FP extrapolation~dashed
curve 3! excellently agree with the result of exact calcu
tions ~solid curve!. Figure 3~a! shows the relatedN̄v(r b

50) values. One can see that the discrepancy between
results of the Biberman method based on Eq.~19! ~dashed
curve! and the corrected FP extrapolation, Eq.~17! ~solid
curve!, does not exceed 10%. This latter value is a go
estimate of the accuracy of formula~17!.

V. EXCITATION DUE TO RADEXT FROM FAST
Na„3p 3Õ2… PHOTOFRAGMENTS

So far we have considered photon emission and abs
tion processes within the system of slow sodium atoms
an arbitrary opacity of the beam. In the present section
shall apply the above theory to the specific experimental c
ditions of Paper I. The relatively small opacity of the bea
zvR<k0R50.37, simplifies the analysis of radiative excit
tion transfer considerably because it allows an expansio
different photon propagation factors into series of the sm
parameterk0R.

The purpose is to determine the extent to which phot
emitted by fast Na(3p3/2) photofragments lead to excitatio
of Na(3s1/2) atoms from the primary beam. In order to d
termine the number of slow excited Na(3p3/2) atoms created
in this way one must obtain the excitation functionS* enter-
ing Eq. ~11!. As will be shown in the next section@see Eq.
~52!#, it is sufficient to determine the value ofS* in the
center of photodissociation zoneVPD. The volumeVPD is
depicted in Fig. 2 and corresponds to a sphere of radiuR
50.1 cm. In the center of this volume,

I n~rW50!5GnatE
VPD

d3r 8 Gn~rW50,rW8!«n~rW8!nfast* , ~36!

Gn~rW,rW8!5
1

4purW2rW8u2
exp~2knurW2rW8u!, ~37!

S* ~rW50!5E
2`

`

dn knI n~rW50!. ~38!
Downloaded 19 Nov 2008 to 131.114.129.199. Redistribution subject to A
e

s

-

-

t.
y

the

d

p-
r
e

n-
,

of
ll

s

The excitation functionS* should account for the following
conditions.~i! The photons are emitted in the volumeVPD by
the fast Na(3p3/2) photofragments, while we assume th
their concentrationnfast* is constant within theVPD. ~ii ! In
the photodissociation process, the Na(3p3/2) photofragments
are formed with a velocity distributionf fast(vW ). Due to the
Doppler effect, the photons emitted by the photofragment
point rW8 and propagating towardsrW50 ~see Fig. 2! have a
frequency distribution

«n~rW8!5lE d3v f fast~vW !d~nW vW 2vn!, vn5~n2n0!l,

~39!

which is normalized as* dn «n51. The resulting spectra
intensityI n of radiation exciting the slow Na(3s1/2) atoms at
point rW50 is formed by photons emitted by photofragmen
from the entire set of pointsrW8 belonging to the photodisso
ciation zoneVPD. The factorGn(rW50,rW8), Eq. ~37!, ac-
counts for the probability of these photons to reach the ce
of the zoneVPD without absorption. Finally, the coefficien
kn determines the fraction of incident light with intensityI n

which is absorbed atrW50.
The total velocity of photofragments~relative to the

mean flow velocity of the beam! results from the velocity
eW yvy of the Na2 molecules in the beam prior to the dissoci
tion and the velocityvPD acquired in the dissociation:

vW 5eW yvy1vPDnW̃ . ~40!

The photofragment angular distributionP(nW̃ ) is represented
to a good approximation by a sin2 uPD function~see Sec. III A

in Paper I!: P(nW̃ );12(nW̃ •eW z)
2. We relatenW̃ to the recoil

direction of the excited photofragments. Since the emiss
profile, Eq. ~39!, is a function of the scalar productnW •vW

52vy cosu2vPD(nW̃ •nW ), it is convenient to introduce a new
coordinate system$x̃,ỹ,z̃% with the new ỹ axis pointing in
the direction of2nW ~see Fig. 2!. This is done in two steps by
Euler transformation. First, the$x,z% plane is rotated by an
anglew around they axis: $x,y,z%→$x̃,y,z̄%. Then the$y,z̄%
plane is rotated by an angleu around thex̃ axis: $x̃,y,z̄%
→$x̃,ỹ,z̃%. In the new coordinates, the vectoreW z has the
components$cosw sinu,cosw cosu,2sinw%. In spherical co-
ordinates$w̃,ũ% regarding the photofragmentation directio

nW̃ , wherenW̃ has the components$cosũ,sinũ cosw̃,sinũ sinw̃%,
the normalized photofragment angular distribution is writt
as

P~ w̃,ũ !5
3

8p
@12~nW̃ •eW z!

2#,

~41!
~nW̃ •eW z!5cosũ cosw sinu1sinũ cosw̃ cosw cosu

2sinũ sinw̃ sinw.

In the new notation, Eq.~39! becomes

«n~rW8!5lE
2`

`

dvy f mol~vy!E
0

2p

dw̃E
0

p

dũ

3sinũ P~ w̃,ũ !d~vn1vPDcosũ1vy cosu!,
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



fo

-

ce

Eq

to
is
e

e

t
to

n

-
lu

u

tor,

ities

n

n

tial
r-

de-

ro-

to
d

on

tion
is

7103J. Chem. Phys., Vol. 119, No. 14, 8 October 2003 Velocity redistribution. II
where f mol(vy) is the velocity distribution of Na2 molecules
in the beam prior to the dissociation@see Eq.~4!#. After a few
direct manipulations this equation can be reduced to the
lowing final form:

«n~w,u!5
l

ApucosuuDvmol

3

4 E21

1

dt̃

3expS 2
vPD

2

Dvmol
2

~vn /vPD1 t̃ !2

cos2 u
D

3F12
~12 t̃2!

2
~cos2 u cos2 w1sin2 w!

2 t̃2 sin2 u cos2 wG , ~42!

wheret̃5cosũ and f mol is substituted by its exponential rep
resentation~4!.

The emission profile«n does not depend on the distan
r 8. Therefore, after integration of Eq.~36! over r 8 in spheri-
cal coordinatesd3r 85(r 8)2dr8 dw du sinu, the source func-
tion S* given by Eq.~38! is reduced to

S* ~rW50!5Gnatnfast*
1

4p E
0

2p

dwE
0

p

du sinuE
2`

`

dn «n~w,u!

3H 12expF2
k0R

A12cos2 u

3
ApDvat

ucosuu
f atS vn

ucosuu D G J . ~43!

For the reasons explained in Sec. VI A, the integration in
~43! is not restricted to the photodissociation zoneVPD as in
Eq. ~38!, but is performed over the entire beam volumeVb .
Formally, it corresponds to introducing an additional fac
1/A12cos2 u into the argument of the exponential transm
sion factor. Such a replacement of the integration volum
justified by the consideration given in Appendix B.

In fact, the photofragment emission profile«n is a con-
volution of a narrow profile with the widthl21ucosuuDvmol

related to the initial velocity distribution of molecules in th
beam @velocity componenteW yvy in Eq. ~40!# and a broad
profile with the widthl21vPD due to the velocity acquired

by fragments in the dissociation@velocity componentvPDnW̃
in Eq. ~40!#. This convolution is complicated by the fac
that the velocity distribution is anisotropic with respect
the angular variables. Efficient excitation of slow Na(3s1/2)
atoms from the primary beam occurs at frequenciesn
close to the center of the absorption profilekn , Eq. ~6!, i.e.,
for atoms with velocitiesvn5(n2n0)lP(2ucosuuDvat,
ucosuuDvat). Evidently, these frequencies belong to the ce
ter of the emission profile«n , which varies insignificantly at
frequencies for whichkn is high enough to ensure an effi
cient absorption. The latter can be directly verified by eva
ating the integral in Eq.~42!. For photodissociation from
vibrational levelsv9>17 the ratiovPD

2 /Dvmol
2 exceeds the

value of>9. This allows us to use the saddle point techniq
in the vicinity of point t̃5vn /vPD, which yields
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«n~w,u!5
3

4

l

vPD
F12

~12vn
2/vPD

2 !

2
~cos2 u cos2 w1sin2 w!

2
vn

2

vPD
2

sin2 u cos2 wG . ~44!

The small values of the ratio (vn /vPD)2<0.1 ~with uvnu
<Dvat) suppress the dependence of«n on the frequency.

Since the opacityk0R is small, the source functionS* ,
Eq. ~43!, with the emission profile«n(w,u) given by Eq.
~44!, can be expanded in series ofk0R in a manner similar to
that used for the calculation of the Biberman escape fac
Eq. ~20!:

S* ~rW50!5Gnatnfast* k0R
15pAp

64

Dvat

vPD
F11

1

8

Dvat
2

vPD
2

1
A2

p
k0R~ ln~k0R!21.751C!1¯G . ~45!

Such an expansion is valid for the same range of opac
(k0R,0.5) as in the case of the expansion in Eq.~20!. Com-
parison with the results of numerical evaluation of Eq.~43!
shows that Eq.~45! does not differ from the exact expressio
by more than 3%.

The nonuniformity of the spectral profile«n becomes
noticeable at frequenciesun2n0u;vPD/l and may some-
what influence the efficiency of RADEXT due to absorptio
of photons at the wings of the absorption profilekn . To
determine this influence, the source function, Eq.~43!,
should be calculated using the exact profile«n given by Eq.
~42!. Using the first-order series expansion of the exponen
factor on the opacityk0R, a number of elementary transfo
mations reduces Eq.~43! to the form

S* ~rW50!

5Gnatnfast* k0R
Dvat

DvA2

3

32E21

1 dt

utuA12t2

3E
21

1

dt̃~32 t̃22t213t̃2t2!expS vPD
2

2Dv2

t̃2

t2D , ~46!

with

Dv25
Dvat

2 1Dvmol
2

2
.

This equation shows that the properties of RADEXT are
termined by a new effective mean velocityDv. This new
variable arises due to the combination of the absorption p
file kn with the emission profile«n , Eq. ~42!, whereby the
latter is a product of the convolution of contributions due
the initial velocity distribution of molecules in the beam an
the velocity distribution acquired during the fragmentati
process. The large value of the ratiovPD

2 /(2Dv2).5 allows
us again to use the saddle point technique for the evalua
of the integrals. After a few manipulations, the final result
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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expressed in a form identical with Eq.~45!, except that the
first two terms in square brackets should be replaced as
lows:

11
1

8

Dvat
2

vPD
2

→11
1

4
r2, r5

Dv
vPD

. ~47!

Equation ~46! contains helpful information about th
course of the excitation process of atoms from the prim
beam by photons emitted by excited photofragments.
integrand of Eq.~46! implies that the main contribution to
the value ofS* is due to anglesũ with cosũ[t̃.0. This
means that the main contribution to the population of
slow Na(3p) atoms is due to photons emitted by photofra
ments perpendicularly to their fragmentation velocity rega
less of the direction of the fragmentation. Indeed, atucosũu
.0 the Doppler frequency shift due to the photofragmen
tion velocity, ul21vPDcosũu, exceeds the absorption widt
l21Dvatucosuu. Consequently, most of the photons emitt
by the photofragments withucosũu.0 leave the primary
beam without absorption. This fact is represented by the
ponentially decreasing multiplier in Eq.~46!. The RADEXT
process is thus dominated by cosũ.0.

The above-discussed broadband nature of the emis
profile allows us to draw definite conclusions about the
locity distribution f̃ (vy) of the source function entering th
kinetic Eq. ~7!. The probability to excite a slow atom wit
velocity vy at point rW is proportional to the product of th
probability f at(vy) to find an atom with such a velocity an
the total intensityI ñ(rW) of the radiation ‘‘seen’’ by this atom
This ‘‘seen’’ intensity depends on the Doppler frequen
shift ñ2n05cosu vy /l. The profile ofI n(rW), Eq. ~36!, is not
necessarily identical with the profile«n given by Eq.~39!.
The exponential transmission factor exp(2knurW2rW8u) in Eq.
~37! implies that during the propagation of photons from t
emission pointrW8 to the absorption pointrW they are absorbed
in the beam volume with an efficiency depending on th
frequencyn. However, since the opacityk0R is small, the
transmission factor is close to unity. Therefore the intens
profile I n(rW) follows the broadband character of the emiss
profile «n , Eq. ~44!. Consequently, the RADEXT proces
leads to a velocity distribution of the source function close
that of the ground-state atoms in the beam,f̃ (vy)
. f at (vy). To illustrate this conclusion, we examine the e
pression for the velocity distribution of the source function
the center of the photodissociation zone:f̃ (vy)
; f at(vy)I ñurW50 . Inserting Eq.~44! into Eq. ~36! and inte-
grating the latter over the radiusr 8 and anglew in the spheri-
cal coordinate system$r 8,u,w%, we obtain

f̃ ~vy!urW50; f at~vy!
3

4 E21

1

dtF12
~12vy

2/vPD
2 !

4
~11t2!

2
vy

2

2vPD
2 ~12t2!G 12exp~2zvR/utu!

zvR/utu
. ~48!

Here t5cosu and the absorption factorzv is determined by
Eq. ~10!. The calculations show~see Fig. 5! that for the
opacity k0R50.37 the profile of the distribution function
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f̃ (vy)urW50 deviates only slightly from the Maxwellian func
tion f at(vy). The widths of the distributionsf at and f̃ are
Dv5Dvat andD ṽ51.19Dvat, respectively: i.e., they differ
by only 19%. We define the widthDv of any symmetrical
velocity distribution functionf (v) as Dv252* dv v2f (v)/
* dv f (v).

VI. RESULTS AND DISCUSSION

A. Total number of slow Na „3p 3Õ2… atoms produced
by RADEXT

In the preceding sections we have obtained the se
equations necessary for the calculation of the total num
NNa

slow* of slow Na(3p3/2) atoms created due to RADEXT. In

order to obtain a numeric result describing the process un
the conditions of Paper I, Eq.~13! should first be averaged
over the normalized velocity distributionf̃ (v) @Eq. ~8!# of
the source functionS* (rW,vy):

NNa
slow* 5Gnat

21E
Vb

d3r S* ~rW !N̄~rW !, N̄~rW ![N̄~r b!, ~49!

N̄~r b!5^N̄v~r b!&

.11
A15

2

k0R̃

A2
1

15

4

~k0R̃!2

A3
S 12

r b
2

R̃2D , ~50!

k0R̃5k0RS 11
1

0.215.47k0R10.169~k0R!2D . ~51!

In Eq. ~50! we have taken into account that averaging t
coefficients entering Eq.~17! yields ^zv&5k0 /A2 and^zv

2&
5k0

2/A3. We have ignored the averaging of the resca
beam radiusR̃ over the distributionf̃ (v) and use instead the
value ofR̃ from Eq.~17! for v50. Such an approximation o
the correction factork0R̃ does not introduce a significan
inaccuracy. The values ofN̄ determined using Eq.~50! and
the exact expression, Eq.~17!, do not differ by more than 6%
@see below the numeric example for^N̄v(r b50)&].

FIG. 5. Solid curve: velocity distributionf̃ (vy)u rW50 , Eq. ~48!, of the source
function in the center of the photodissociation zoneVPD. Dashed curve:
initial Maxwellian velocity distributionf at(vy), Eq. ~4!, of ground-state at-
oms in the beam. In the figure both functions are normalized to unity
vy50.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



s,

io

e

in

.

th

h
bo
ul
th

n-
a

e

to

ly

o-

m-
can

ia-

the

m
is

e
iat-

zed
ser

ctor
ted
ar-

by

st

7105J. Chem. Phys., Vol. 119, No. 14, 8 October 2003 Velocity redistribution. II
Since the source functionS* (rW) is mainly localized
within the photodissociation zoneVPD, where bothS* (rW)
and N̄(r b) are slowly varying functions of their argument
the integral~49! can be approximated by the relation

NNa
slow* 5VPDS* ~rW50!

N̄~r b50!

Gnat

5NNa
fast*

S* ~rW50!

nfast*

N̄~r b50!

Gnat
, ~52!

where we have assumed that the densitynfast* of the excited
photofragments does not vary within the photodissociat
zone VPD, so thatNNa

fast* 5nfast* VPD. Note thatnfast* in the

denominator on the right-hand side of Eq.~52! cancels out
when the expression for the source functionS* (rW50) is
inserted, since the latter also contains the termnfast* @see Eq.
~45!#.

Strictly speaking, the source functionS* (rW) extends be-
yond the photodissociation zoneVPD. This is because the
photons emitted by the fast Na(3p3/2) photofragments can b
absorbed in the entire volumeVb of the beam and not only
within VPD. To account for this fact, we have replaced
Eq. ~38! the integration over the zoneVPD by the integration
over the beam volumeVb @see the remark just after Eq
~43!#. The analysis of Eq.~49! given in Appendix B justifies
such a replacement. Moreover, this analysis shows also
the total number of fast Na(3p3/2) photofragments entering
Eq. ~52! does not depend on the particular shape of the p
todissociation zone, which is chosen as a sphere in the a
treatment. Furthermore, it does not depend on the partic
spatial distribution of the fast photofragments, because
termS* (rW50)/nfast* 5F̃(rW850) does not depend onnfast* @see
Eq. ~B4!#. Therefore the assumptionnfast* 5const, which was
done when calculating the integrals in Eqs.~38! and ~36!,
does not influence the accuracy of the result. Thus Eq.~52! is
valid for realistic experimental conditions which usually i
volve an intensity distribution within the laser beam and
photodissociation zone which usually does not have a sph
cal shape. The accuracy of Eq.~52! is only restricted by the
assumption of a slow variation of the functionN̄(r b), Eq.
~50!, with the spatial coordinater b . Figure 3~a! shows the
range of beam opacities for which Eq.~52! is applicable: the
mean number of scattering events~solid curve! must be ap-
proximately equal to the reciprocal of the Biberman fac
Meff ~dashed curve!. This condition is fulfilled for opacities
k0R,0.5.

Under the conditions of the experiment of Paper I,k0R
50.37, Dvat5300 m/s,Dvmol5260 m/s, andDv5281 m/s,
and according to Eqs.~50! and ~51!, we obtainN̄(r b50)
52.35. In the context of Paper I, the valueN̄(r b50) relates
to the escape factorg in Eq. ~1! as N̄(r b50)51/g. It is
interesting to compare theN̄(r b50) value with the result of
exact averaging,̂ N̄v(r b50)&52.50, given by Eq.~17!.
Hence Eqs.~50! and ~51! can be considered as sufficient
accurate.

Finally, incorporating Eq.~45! into Eq. ~52! and ac-
counting for the correction~47!, we obtain for the given
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geometry of Paper I~when the photodissociating laser is p
larized perpendicularly to the beam axis! that the ratio of the
number of slow atoms produced in the RADEXT to the nu
ber of fast photofragments produced in the dissociation
be expressed as

NNa
slow*

NNa
fast*

5N̄~r b50!k0R
15pAp

64

Dvat

vPD
F11

1

4
r2

1
A2

p
k0R@ ln~k0R!21.751C#G , r5

Dv
vPD

.

~53!

Inserting the values of photofragment velocitiesvPD(v9
517)5857 m/s andvPD(v9523)51065 m/s, we obtain for
the ratio~53! the values of 0.26 and 0.21 for photodissoc
tion from the levelsv9517 andv9523, respectively. Al-
though these values are in fairly good agreement with
experimental results~see Table I!, they still show a reversed
tendency: the theoretical ratio is larger for dissociation fro
the lower vibrational level, whereas the experimental ratio
larger for dissociation from the higher vibrational level.

It is worth mentioning that the efficiency of th
RADEXT depends on the polarization of the photodissoc
ing laser radiation. Formulas~45! and~53! were obtained for
the situation when the photodissociation laser is polari
perpendicularly to the particle beam axis. When the la

is polarized parallel to the beam axis, the term (nW̃ •eW z) in

Eq. ~41! should be replaced by (nW̃ •eW y)5cosu cosũ
2sinu sinũ cosw̃. The source function then becomes

S* ~ i !~rW50!5Gnatnfast* k0R
9pAp

32

Dvat

vPD
F12

5

12
r2

1
A2

p
k0R@ ln~k0R!21.751C#G . ~54!

This leads to an increase in the mean absorption by a fa
of 1.2 due to the increase of the fraction of radiation emit
by photofragments in the direction perpendicular to the p
ticle beam axis.

B. Account for the hyperfine structure of Na

So far, we have ignored the hyperfine structure~HFS! of
the Na energy levels. In the 3p3/2 state the hyperfine splitting
is relatively small, but it is not so for the ground state 3s1/2,
where the 1772-MHz separation between theF51 and F
52 levels is of an order of Doppler shifts in the emission

TABLE I. Experimental and theoretical data on the ratio of slow to fa
Na(3p3/2) atoms for photodissociation from the vibration levelsv9517 and
v9523.

Na2

v9 level

NNaslow* /NNafast*

Experiment
RADEXT theory

without HFS
RADEXT theory

with HFS

17 0.16 0.26 0.13
23 0.22 0.21 0.19
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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fast photofragments@see Fig. 6~a!#. Obviously, such large
splitting is influencing the radiation imprisonment proce
and, hence, the efficiency of RADEXT. Here we shall pr
vide a brief insight into this problem and give a simple qua
titative evaluation. A detailed account requires the und
standing of how the differentF sublevels of the 3p3/2 state
are populated in the potodissociation process, and it will
given in a separate publication.

The hyperfine splitting in the excited 3p3/2 state is much
smaller than the Doppler widthDnD5Dvat/l5500 MHz
~Fig. 6!. Therefore the 3p3/2 state can be considered as
single energy level, whereby we assume that in the photo
sociation theF5$0,1,2,3% sublevels are uniformly populate
according to their statistical weights. The 1772-MHz hyp
fine splitting of the ground state 3s1/2, in contrast, requires
that it is treated as two separate levelsF51 andF52 with
statistical weightsḡ153 and ḡ255, respectively. Therefore
the 3p3/2→3s1/2 transition splits into two spectrally resolve
lines @see Fig. 6~a!# with intensities in accordance with th
sum rules:30 I 1 /I 25ḡ1 /ḡ253/5. Furthermore, the sum rule
imply that the absorption coefficient in the center of the lin
I 1 and I 2 is expressed as a fraction of the coefficientk0

given by Eq.~6!: k0
(1)53/8k0 andk0

(2)55/8k0 . An immedi-
ate consequence of the hyperfine splitting is the decreas
the effective opacity of the media to the valuek0

effR
.A15/8k0R50.19 ~see Appendix C for quantitative est
mates!. Accordingly, the escape factorN̄(r b50), which is

FIG. 6. Hyperfine structure of Na and its influence on the efficiency
RADEXT. ~a! Hyperfine splitting of 3p3/2 and 3s1/2 levels and the respective
splitting of the sodiumD2 spectral line.~b! Emission profiles«n

(F) of fast
photofragments and absorption profileskn

(F) of slow Na atoms for transitions
between 3p3/2 and 3s1/2 (F51,2) levels at photodissociation from the vibra
tion level v9517. ~c! The same as~b! for the dissociation fromv9523.
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determined by Eq.~50!, reduces toN̄(eff)(rb50)51.8. This, in
turn, leads to a decrease of the ratio of numbers of slow
fast Na(3p) atoms, sinceN̄(r b50) enters Eqs.~52! and
~53!.

Another important manifestation of the effect of HFS
the modification it implies on the source functionS* (rW
50). Figures 6~b! and 6~c! illustrate how the broadband
emission profiles«n

(F) interact with the absorption profile
kn

(F)5k0
(F)/ucosuuexp$2(n2n0

(F))2/(DnDucosuu)%, with F
51,2. We assume that the Doppler broadening of the em
sion profile of fast photofragments is due to the velocityvPD

they acquire in the dissociation. The widthDvmol of the ve-
locity distribution of molecules in the beam is several tim
smaller thanvPD and is restricted to the direction along they
axis. Therefore we disregard its contribution in the followin
estimates. It means that in the evaluation of«n

(F) @Eq. ~39!#
we ignore the low-velocity componentsvy in Eq. ~40!. Fur-
thermore, we neglect the anisotropy in the photofragm
angular distribution and optical pumping between the H
levels of the ground state. The latter can be safely dis
garded because the radiation emitted by fast photofragm
is very weak compared to the saturation intensity. With su
assumptions, the emission profile can be written as

«n
~F !5H l

2vPD
when un2n0

~F !u,vPD/l,

0 when un2n0
~F !u.vPD/l .

~55!

This equation describes a uniform frequency distribution
emitted photons within the boundariesDn56vPD/l, where
the boundaries correspond to recoil of photofragments
wards and backwards from the center of the photodisso
tion zone~see Fig. 2!.

In the case of photodissociation from the vibration
level v9517 with vPD5857 m/s, each emission profile«n

(F) ,
F51,2, extends from the hyperfine line centern0

(F) by Dn
561453 MHz and does not reach the absorption frequen
of the other hyperfine component@see Fig. 6~b!#. Therefore
the formation of the source function via RADEXT is inde
pendent for both hyperfine components. The resulting eff
tive source function is then given by the sum of source fu
tions for each hyperfine component:Seff* (rW50)5S1* (rW50)
1S2* (rW50), whereSF* is defined by Eq.~45!, except thatk0

should be replaced byk0
(F) and Gnat by Gnat

(F)5ḡF/8Gnat to
account for branching of the 3p3/2→3s1/2 transition into hy-
perfine components. Accordingly, the ratio~53! of numbers
of slow and fast excited atoms should be rewritten to acco
for the two independent HFS contributions:

NNa
slow*

NNa
fast*
U

eff

5
NNa

slow*

NNa
fast*
U

1

1
NNa

slow*

NNa
fast*
U

2

, ~56!

where

f
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NNa
slow*

NNa
fast*
U

F

5N̄~eff!~r b50!
ḡFk0

~F !

8
R

15pAp

64

Dvat

vPD

3F11
1

4
r21

A2

p
k0

~F !R@ ln~k0
~F !R!21.751C#G .

~57!

Using Eqs.~56! and~57!, we obtainNNa
slow* /NNa

fast* 50.13 for

v9517.
In the case of dissociation from the levelv9523, the

larger fragmentation velocity ofvPD51065 m/s increases th
width of the photofragment emission profile«n

(F) , Eq. ~55!,
to Dn561805 MHz @see Fig. 6~c!#. This shift is larger than
the 1772-MHz splitting between theF51 and F52 HFS
levels, so that a fraction of photons emitted on one hyper
transition can be absorbed on the other. This results in
increased opacity of the medium. Therefore the te
ḡFk0

(F)/8 on the right-hand side of Eq.~57! should be re-
placed byḡFk0/8. Furthermore, since the term in the squa
brackets of Eq.~57! containingk0

(F)R does contribute to no
more than 15% of the total value under the conditions
Paper I withk0

(F)R.k0
effR50.19, we replace it by an effec

tive valuek0
(eff)R common for both HFS components. Sum

mation according to Eq.~56! then yields

NNa
slow*

NNa
fast*
U

eff

5N̄~eff!~r b50!k0R
15pAp

64

Dvat

vPD
F11

1

4
r2

1
A2

p
k0

~eff!R@ ln~k0
~eff!R!21.751C#G . ~58!

Inserting the corresponding values we obtainNNa
slow* /NNa

fast*
50.19 for v9523. Comparing the obtained values with th
experimental data~see Table I!, one can see that the accou
for the hyperfine structure correctly reproduces the tende
observed in the experiment, with the ratio being smaller
v9517 and larger forv9523. Note that the increase in th
ratio for v9523 is explained solely by the fact that the fra
mentation velocity has become large enough to shift
emission profile as far as the hyperfine splitting of t
ground state. A further increase in the fragmentation velo
due to increasedv9 does not lead to any further increase
the RADEXT efficiency as soon as both hyperfine transit
frequencies are covered by the photofragment emission
stead, a monotonic decrease is expected because of th
crease (;1/vPD) in the spectral density of the emission i
tensity.

VII. CONCLUSION

In the present paper we have provided a theoretical
scription of radiation trapping in collimated atomic beams
shows how the effective lifetime of an ensemble of ato
relates to the natural decay rateGnat. The trapping factorg0 ,
which contains quantitative information about the increase
the effective lifetime in an optically thick medium, depen
on a number of experimental conditions. Equation~13! im-
plies that the total number of excited atoms,Nv* , created by
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the source functionS* depends on its position in space. Th
total numberNv* can be directly obtained from the mea
number of scattering events,N̄v(rW), using Eq.~13!. The lat-
ter number describes the scattering of resonance photon
der steady-state conditions in an atomic beam, and we h
expressed it analytically by means of the Fokker–Plan
technique. Although this method is precise only at lar
opacities of the beam, an accurate extrapolation of the
solution into the region of small opacities was achieved
introducing a correction. In essence, this correction me
that the actual beam radius is replaced by reduced on
mathematical justification of this procedure is provided
analysis of the time-dependent radiation imprisonment eq
tion using the geometric quantization technique which w
originally developed in Ref. 4. This method introduces
quasiparticle and relates the trapping factors to dynam
characteristics~Hamiltonian! of the quasiparticle in an infi-
nite coordinate space. Essentially, the imprisonment prob
in a finite volume of absorbing medium is reduced to t
solution of a Schro¨dinger Eq.~27! for the quasiparticle mov-
ing in an effective potential well determined by the atom
beam boundary. Using the semiclassical approach, the t
ping factorsgj are obtained as quantized eigenvalues of
quasiparticle Hamiltonian.

The above theory considers ideally collimated bea
and neglects any deviation of the particle velocity vect
from the beam axis. The effects of finite but small collim
tion anglesq occurring under realistic experimental cond
tions become noticeable at large beam opacities. In
theory these effects can be quantitatively accounted for
introducing a diffusion mechanism of excitation transfer b
tween the atoms belonging to different subensemblesJv
with fixed velocitiesv. The velocity conservation within a
chosen subensembleJv is similar to the conservation of fre
quency during scattering of light in a monochromatic sc
tering medium. The theory of Milne1 anticipates that unde
such conditions the escape factors are proportional to
square of the opacity of the medium,g0;(k0R)2. This is
represented by the last term on the right-hand side of
~50!. The migration of excitation among different sube
semblesJv due to the radiative excitation transfer is simil
to the frequency diffusion in spectral lines known in the co
ventional radiation imprisonment treatments as partial f
quency redistribution~see Ref. 17 for details!. In the media
like thermal vapors or poorly collimated effusive beams t
exchange with photons among the subensemblesJv be-
comes very efficient and a complete frequency redistribut
dominates. Under such condition the Holstein’s lawg0

;k0R applies,8,9 reducing considerably the efficiency of th
radiative excitation transfer. An appropriate modification
geometrical quantization technique allowing the analyti
description of radiation imprisonment in beams withq.0
is possible on the base of methods developed in Refs
and 31.

We have applied the developed theory of radiation i
prisonment in beams to explain the recently observed p
nomenon of radiative excitation transfer~3! discussed in Pa-
per I. In this process, the photons emitted by fast exci
photofragments excite atoms from the primary beam w
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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astonishing efficiency, leading to considerable changes in
velocity distribution of excited atoms after the photodiss
cion. Using the theory described in this paper, we ha
shown that such redistribution of the velocities of excit
atoms can be well explained by the consequences of ra
tion trapping. In particular, an interesting conclusion follow
from the excitation source function in Sec. V: the major co
tribution to the excitation of atoms from the primary beam
due to the photons emitted by photofragments perpend
larly to their fragmentation direction, whereby this statem
is valid regardless of the direction of the photofragmentat
direction.

We have shown that in order to correctly reproduce
experimental observations, the non-negligible hyperfi
splitting of the Na ground state should be taken into cons
eration. Comparison of the results showed an excel
agreement of the predictions of our theory with the expe
mental data of Paper I. The effect of hyperfine structure
radiation imprisonment has not yet been duly considered
the scientific literature. A detailed study dealing with th
matter is in progress and will be reported elsewhere. In c
clusion, we emphasize the importance of a proper accoun
the radiation trapping phenomenon in any experiment
volving atoms in resonance states, be they among the in
reactants or the reaction end products.
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APPENDIX A: FOURIER TRANSFORM
OF THE RI EQUATION IN AN INFINITE BEAM

In the GQT, we must consider the spectral problem
scribed by Eq.~23! for a model beam with infinite radiusR
5`. We are interested in the action of the RI operatorĜv ,
which is determined by the integral term of Eq.~9!, on the
modecpW (rW)5exp(ipxx1ipzz). Two conditions allow the sim-
plification of the corresponding Fourier integral:~i! Ĝv is a
convolution-type operator regarding the$x,z% coordinates
and~ii ! the modes of interest do not depend ony. From~i! it
follows that the modescpW (rW) are eigenfunctions of the op
erator Î –Ĝv . Their eigenvalues are given by the Fouri
transformV(pW ), Eq. ~25!, of the kernelGv , Eq. ~10!, over
the $x8,z8% plane, while condition~ii ! implies that this trans-
form does not depend on the coordinatey. For convenience
we choose the latter asy50 ~see Fig. 2!.

In the evaluation ofV(pW ), Eq. ~25!, it is convenient to
introduce a new coordinate system$x8,y8,z8% which is cen-
tered in the photodissociation zoneVPD ~Fig. 2! with the z8
axis pointing along the direction of the momentumpW
5$px ,pz%. We then determine spherical coordinat
$r 8,w8,u8% with u8 being the angle between thez8 axis and
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the vectorrW8, andw8 being the angle between they8 axis and
the projection ofrW8 on the$x8,y8% plane. Such a choice o
coordinates allows one to obtain the simplest representa
of both the phase factorpxx81pzz85upW ur 8 cosu8 and the
factor cosu5sinu8 cosw8 which are entering the exponent i
Eq. ~25! and the kernelGv Eq. ~10!. With the above coordi-
nates, the integration of Eq.~25! over the radial coordinater 8
reduces it to the form

V~pW !512
1

4p E
0

p

du8 sinu8E
0

2p

dw8

3
1

11p2/zv
2 sin2 u8 cos2 u8 cos2 w8

,

p5Apx
21pz

2. ~A1!

The integral overw8 is given in Ref. 23:

E
0

2p

dw8
1

11l2 cos2 w8
5

2p

A11l2
,

so that representation~A1! is equal to formula~26!.

APPENDIX B: DERIVATION OF EQ. „55…

Consider Eq.~49! determining the total number of slow
Na(3p3/2) atoms. Due to the small opacityk0R<0.5, the
mean number of scattering events,N̄(r b), within the beam
changes very little with increasing distancer b from the beam
axis. Therefore it is possible to replaceN̄(r b) by its value
N̄(r b50) in the center of the beam:

NNa
slow* 5Gnat

21N̄~r b50!S* , S* 5E
Vb

d3r S* ~rW !. ~B1!

Inserting Eqs.~36!, ~37!, and~38! in the above equation, the
integral valueS* of the source functionS* (rW) is obtained by
integrating the emission term over the photodissociation v
ume VPD and the absorption term over the beam volum
Vb :

S* 5GnatE
2`

`

dnE
Vb

d3r kn~rW2rW8!

3E
VPD

d3r 8 Gn~rW,rW8!«n~rW82rW !nfast* ~rW8!. ~B2!

Importantly, the emission profile«n , Eq. ~39!, and the ab-
sorption profilekn , Eq. ~5!, depend on the directionnW be-
tween the pointsrW8 andrW, but not on the spatial positions o
rW or rW8 in the beam. This is a consequence of two proper
of the considered experimental situation:~i! the distribution
of the ground-state atoms in the beam is to a good appr
mation homogeneous and~ii ! the velocity distribution
f fast(vW ) of the Na(3p3/2) photofragments does not depend
the intensity of the photodissociation laser~weak excitation
limit !. The latter assertion is important because the inten
varies across the laser beam diameter.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Equations~5! and ~39! imply that the spectral coeffi
cients«n and kn are symmetrical functions of spatial coo
dinates. Therefore, after changing the order of integrat
Eq. ~B2! can be rewritten in the form

S* 5GnatE
VPD

d3r 8 nfast* ~rW8!F~rW8!,

F~rW8!5E
2`

`

dnE
Vb

d3r Gn~rW,rW8!kn~rW2rW8!«n~rW82rW !. ~B3!

The dimensionless functionF(rW8) has a meaning of som
generalized escape factor. The properties of functions of
kind have been studied in Refs. 21 and 27, where it w
shown that their dependence on the spatial coordinate
very similar to that for the Biberman factorMeff , which is
determined by the expression in the square brackets of
~18!. At small opacities, the functionF(rW8) varies slowly
within the beam volume, which allows us to setF(rW8)
.F(rW850). Equation~B1! can thus be reduced to

NNa
slow* 5F E

VPD

d3r 8 nfast* ~rW8!GF̃~rW850!
N̄~r b50!

Gnat
,

~B4!

F̃~rW850!5GnatE
2`

`

dnE
Vb

d3r Gn~rW,rW850!kn~rW !«n~rW !.

The exact representation of functionF̃(rW850) coincides
with the source function in Eq.~52!, S* (rW50)/nfast* 5F̃(rW8
50), provided that integration over the photodissociat
zone VPD in Eq. ~36! is replaced by integration over th
beam volumeVb . This correspondence justifies the replac
ment of VPD by Vb when evaluating the integrals in Eq
~43!. It is well seen from the above derivation that the to
number of slow excited atoms,NNa

slow* , relates to the tota

number of fast photofragments,NNa
fast* , whereby this relation

does not depend on the spatial distribution ofnfast* (rW8) and
the shape of the photodissociation zoneVPD. Hence it does
not depend also on the intensity profile of the photodisso
tion laser.

APPENDIX C: EFFECT OF HFS
ON RADIATION IMPRISONMENT

Under the conditions considered in this study, the H
of the upper level 3p3/2 is not resolved, but the lower leve
3s1/2 is split into two spectrally resolved componentsF51
and F52. Hence the imprisonment of radiation within th
ensemble of slow Na(3s1/2) atoms occurs on two differen
transitions. This requires a proper modification of the ker
entering the integral term of the imprisonment Eq.~9! and
Eq. ~14! describing the mean number of scattering even
N̄v(rW). Using the sum rules for the HFS spectra,30 we can
rewrite the kernelGv of the imprisonment Eq.~9! as

Gv
~eff!~rW,rW8!5 3

8 Gv
~1!~rW,rW8!1 5

8 Gv
~2!~rW,rW8!, ~C1!

whereGv
(F) is given by Eq.~10! in which k0 is replaced by

k0
(F) . The integral in Eq.~9! with kernelGv

(eff)(rW,rW8) describes
the situation when the slow excited Na(3p3/2) atoms emit
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photons on two well-resolved hyperfine transitions to theF
51 andF52 levels of the ground state with relative pro
abilities ḡF/8. The radiation diffusion in the beam is ther
fore described as two independent imprisonment proce
with different partial absorption coefficientsk0

(F) correspond-
ing to each of the hyperfine transitions.

Using the kernel given by Eq.~C1!, the equation de-
scribing the mean number of scattering events,N̄v

(eff)(rW), un-
der the conditions of resolved HFS of the ground state
comes

N̄v
~eff!~rW !2E

Vb

d3r 8 Gv
~eff!~rW,rW8!N̄v

~eff!~rW8!51. ~C2!

The solution of Eq.~C2! can be found using the approac
introduced in Secs. III A and IV D. First, the Fokker–Plan
approach is used to findN̄v

(eff) at large opacities, and th
result is then extrapolated into the region of small opaciti
The Fokker–Planck method is manifested by Eq.~15! with
boundary conditions~16!, whereby we keep in mind the
asymptotic properties@Eqs. ~32! and ~33!# of the Fourier
transform V(eff)(p) of the kernelGv

(eff) given by Eq. ~25!.
Using Eqs.~25! and ~26! and the definition of the kerne
given by Eq.~10!, the functionV(eff) for an absorbing me-
dium with non-negligible HFS splitting can be written as

V~eff!~ p̃!5
5

8
VS 8

5
p̃D1

3

8
VS 8

3
p̃D ,

p̃5p/zv5
p

k0 exp~2v2/Dvat
2 !

, ~C3!

for all values of its argument. Using Eq.~32!, which implies
that at large opacitiesV( p̃). p̃2/15, we obtain

V~eff!~ p̃!u p̃→0.
p̃2

15S 8

5
1

8

3D.VS p̃
8

A15
D ,

k0→k0
~eff!5

A15

8
k0 . ~C4!

According to the definition ofp̃ in Eq. ~C3!, the modification
of argument of the functionV in Eq. ~C4! is equivalent to the
replacement of the absorption coefficientk0 for a medium
without HFS by the effective absorption coefficientk0

(eff) .
Note that in Eq.~C4! the functionsV(eff)(p̃) andV( p̃8/A15)
are equal to within 4% or less for all values ofp̃ of interest.
Since the imprisonment equations with HFS are uniqu
determined by the functionV(eff) @see Eqs.~27! and ~31!#, it
is possible to account for the HFS splitting of the grou
state by replacingk0R with the effective opacityk0

(eff)R
5(A15/8)k0R.
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