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Direct numerical method to solve radiation trapping problems with a Doppler-broadening
mechanism for partial frequency redistribution
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We present a numerical method for solving the Holstein-Biberman-Payne equation with Doppler frequency
redistribution. The method is based on direct time propagation of the initial distribution of excited atoms,
employing the split-propagation technique. It allows a precise study of various aspects of radiation transfer
phenomena occurring in an arbitrary convex three-dimensional spatial region, driven by external conditions
with arbitrary time dependencies. We present some results obtained for slab and spherically shaped geometries
and compare them to results from other evaluation methods. The efficiency of the method is demonstrated by
determining the intensity of radiation escaping the gas cell in afterglow experiments.

DOI: 10.1103/PhysRevA.64.022719 PACS number~s!: 32.80.2t, 32.50.1d
n
h

m
n
r

is

ga

-
ip

ia
ion
on
r

m
b
c
re
ve
to
ad

d
b

l

the

e
o-
ri-

h
vel-
v-
ut

by
rlo
-

me
as
olv-
is-

ired

he
e-

in

ion

ee,
I. INTRODUCTION

In optically thick media, photons can be absorbed a
reemitted repeatedly before escaping from the medium. T
process is known as radiation trapping@1,2# and plays an
important role in various physical processes@1,3# and differ-
ent engineering applications@2,4#. In laboratory conditions,
dealing with both thermal and laser-cooled atomic syste
~see, for instance,@5,6#! the radiation trapping has to be ofte
carefully considered in the quantitative analysis of expe
mental findings@2,7,8#.

It is well known that the dynamics of radiation trapping
governed by an integro-differential equation~Holstein-
Biberman equation!, which is very difficult to solve even in
its simplest form@7,9#. The main difficulty arises from the
divergence of the photon mean free path@7#. That is why
studies of radiation trapping in medium geometries, i.e.,
cells, of the simplest one-dimensional shapes~infinite layer,
infinite cylinder, sphere! led to a remarkable variety of spe
cific and sophisticated techniques and approximating rec
for constructing the relevant solutions@2–4,10#.

One major assumption in all early investigations of rad
tion trapping was that of complete frequency redistribut
~CFR!. This implies that the frequency of a reemitted phot
is independent of the frequency of the photon that was p
viously absorbed. When the frequency redistribution is do
nated by the Doppler effect, this assumption cannot
strictly valid: if the absorbed photon has a high-frequen
shift ~compared to the center frequency of the conside
transition!, then the absorbing atom should have a high
locity, and thus it is more probable that the emitted pho
also has a high Doppler shift. This circumstance was alre
recognized by Holstein@9#, but intentionally ignored by him
to reduce mathematical difficulties. Later, Hummer@11# dis-
cussed the frequency redistribution mechanism and
scribed the frequency redistribution function, i.e., the pro
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ability that a photon that is absorbed with frequencyn1 is
reemitted with frequencyn2. In the following years, severa
methods have been developed for solving numerically1 the
generalized Holstein-Biberman equation, which includes
partial frequency redistribution. Holt@13# developed an itera-
tive approach for computing the velocity distribution of th
excited atoms~which is related to the frequencies of ph
tons! as well as their density, but this approach is nume
cally efficient only at very low opacities. van Trigt@14# ana-
lyzed the limiting behavior of the trapping factor at very hig
opacities. We point out that an approach was already de
oped in Ref.@5# suitable for computing the radiation beha
ior during the first moments of an afterglow experiment, b
this approach loses accuracy at later times.

Exact solutions at all opacities can also be obtained
various numerical methods. Among them, the Monte Ca
simulations~see, e.g.,@15#! are quite popular, due to the sim
plicity of the relevant computer codes. However, the run ti
of Monte Carlo simulations quickly becomes prohibitive
the opacity increases. Two other numerical methods for s
ing radiation trapping problems with partial frequency red
tribution are the piecewise-constant approximation~PCA!
@16#, and the propagator function method~PFM! @17#. It
must be noted, however, that the numerical efforts requ
by these methods are also quite large.

A novel, highly accurate numerical method for solving t
Holstein-Biberman radiation transfer equation in finite g
ometries has been put forward recently@18#. That method
can be applied to the investigation of radiation trapping
the three-dimensional gas cells of arbitrary~convex! shape,
but with the assumption of complete frequency redistribut

1Exact analytical solutions are only possible in infinite space, s
e.g.,@12#.
©2001 The American Physical Society19-1
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~CFR!. In the current paper, we extend that technique
Doppler frequency redistribution~the DFR case!. We show
that this approach is not only accurate at all opacities,
that it also requires substantially smaller computational ef
than previous methods.

II. THE BASIC TRAPPING EQUATION

The fundamental problem we address in this paper ca
described with a basic equation, the generalized Holst
Biberman equation@2,5#, which determines the time evolu
tion of the frequency-dependent density function of the
cited atoms,n* (r ,n,t), over the space coordinater and the
frequencyn ~the frequency distribution is related to the v
locity distribution of the atoms@3#!:

]n* ~r ,n,t !

]t
52A21n* ~r ,n,t !2A21W~r ,n;t !n* ~r ,n,t !

1A21E
2`

`

dn8E
V

dr 8Gnn8~ ur2r 8u!

3n* ~r 8,n8,t !1S~r ,n,t !. ~1!

The productA21n* (r ,n,t)dwrdn gives the number of pho
tons emitted spontaneously in the frequency interval@n;n
1dn# by the excited atoms contained in the volumedr per
one second;A21

21 is the natural lifetime of the excited state2

The quantityW(r ,n;t) is the dimensionless rate~i.e., the rate
divided by A21) of the nonradiative quenching of excite
atoms by some~unspecified! processes. In what follows w
assume that the quenching rateWV(r ,n;t) is very large out-
side a given cell of volumeV. This trick makes sure tha
there are no excited-state atoms outside the cell even if
let the integration volume in Eq.~1! extend over the entire
space@19#. The propagatorGnn8(ur2r 8u) describes the pho
ton transfer from an emitting atom to an absorbing one. T
term S(r ,n,t) provides a~nonstationary! source of excited
atoms, e.g., their pumping via external excitation from a
ser beam, energy-pooling collisions, or other mechanism

We note that Eq.~1! still uses several simplifying assump
tions @2#. In particular, we do not consider the polarizatio
and alignment phenomena discussed in@20#. These phenom-
ena can be studied with the present approach by trea
n* (r ,n,t) not as a scalar quantity, but as a correspond
spherical tensor@21#.

To formulate our problem, we specify the propaga
Gnn8(r),

Gnn8~r!5k̄Rnn8

1

4pr2
exp@2rk~n8!#

with k̄[E
2`

`

dnk~n!, ~2!

2In what follows we setA2151, so that all decay times refer to th
‘‘natural’’ time scale.
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whereRnn8 is the frequency redistribution kernel andk(n) is
the spectral absorption coefficient. For the case of pure D
pler broadening@5#

k~n!5k (D)~n![k0
(D) exp~2n2!, k̄5Apk0

(D) , ~3!

Rnn85
1

2
erf~max$unu,un8u%!. ~4!

Here,k0
(D) is the absorption coefficient at the center of t

Doppler-broadened spectral line, and the dimensionless
quencyn is the offset of the frequency measured from t
line center in units of the Doppler widthDn (D). It is worthy
to note that a nontrivial evolution occurs only for those co
ponents of the functionn* (r ,n,t) that are even with respec
to n.

Actually, Eq. ~1! describes a class of transfer process
broader than the conventional radiation trapping proble
Indeed, the class of problems we can treat within the pres
approach can be specified as those for which then depen-
dence of the~spatially uniform! propagatorGnn8(r) can be
related to the Green’s function of a second-order differen
operator over a variablen. A variety of relevant problems
can be found, for instance, in plasma physics@7#.

III. SPLIT PROPAGATION TECHNIQUE

Recently, we proposed a general computational algorit
@18# that allows us to investigate the radiation trapping d
namics in any arbitrary convex three-dimensional~3D! re-
gion driven by arbitrary nonstationary excitation and quen
ing processes. That approach has been developed only fo
CFR case and here we describe its extension to DFR.

The numerical method follows directly the temporal ev
lution of the functionn* (r ,n,t) at the knots of a spatial an
frequency mesh, starting from an initial distribution functio
Such a method is efficient only if an algorithm exists th
allows one to make one step in time propagation with
relatively small number of multiplication operations. Algo
rithms that achieve this withO(N ln N) multiplications per
time step (N is the total number of knots in the mesh used
calculation! are referred to as ‘‘fast,’’ and their introductio
ten years ago has produced proliferating activities in a nu
ber of branches of theoretical physics, such as theore
chemical physics, theoretical atomic physics, solid-st
physics, etc.~see, e.g.,@22,23#!. To our knowledge, there
have been no attempts to apply this very powerful method
the investigation of radiation trapping processes before R
@18#.

For solving Eq.~1! we use the so called split-propagatio
method@24,25# which is based on the following statemen
Let the operatorH be a sumH5A1B of two noncommuting
operators. Then, the operator evolution of the system o
time-step intervaldt ~assumed to be small enough!, UH(dt),
can be approximated as a product of the partial evolut
operators,

UH~dt !5UAS 1

2
dt DUB~dt !UAS 1

2
dt D1O~dt3!, ~5!
9-2
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UD~dt ![exp~2dtD! with DÄA,B,H. ~6!

Within the split propagation approach, we construct
time-propagator operatorU(dt) for Eq. ~1! in the following
form:

U~dt !5expF2
dt

2
WVS r ,n,t1

dt

2 D GF p
21Vp~dt !Fr

ÃexpF2
dt

2
WVS r ,n,t1

dt

2 D G . ~7!

The symbolFr denotes the Fourier transform operator act
on functions

Fr$z~r ,t !%[z̃~p,t !5E dr

~2p!1.5
exp~ ipr !z~r ,t ! ~8!

over the space variables, whileF p
21 gives it inverse from the

Fourier space variablep back to the coordinate variabler .
The elementary propagatorVr(dt) corresponds to the re
duced equation

]n* ~r ,n,t !

]t
52n* ~r ,n,t !1E

2`

`

dn8E
R 3

dr 8Gnn8

3~ ur2r 8u!n* ~r 8,n8,t !, ~9!

describing the radiation transfer in an infinite spaceR3 ~with-
out quenching processes!.

Universally, Eq.~9! is an integral equation over the fre
quency variable. It seems that no universal and fast a
rithm for constructing the evolution operator for such situ
tions is known as yet. Fortunately, in the DFR case it may
directly shown that the following identity holds:

F2
1

2

]2

]n2
1

11n2

2 GexpS n2

2 DRnn8

5
1

2Ap
expS 2

n2

2 D @d (1)~n2n8!1d (1)~n1n8!#,

~10!

whered (1) is the Dirac delta function. Formally, the kern
Rnn8 in Eq. ~4! is the Green’s function of the second-ord
differential operator of a quantum oscillator type. Due to E
~10!, Eq. ~9! can be converted into the differential form
Fourier space:

F2
1

2

]2

]n2
1

11n2

2 G F ]

]t
11G ñ~p,n,t !5F~p,n!ñ~p,n,t !

~11!

with F(p,n) given by the Fourier transform from the inte
gral kernelGnn8(r) @3#,

F~p,n!5
k (D)~n!

upu
arctanF upu

k (D)~n!
G

02271
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and

ñ~p,n,t !5expS n2

2 Dn* ~p,n,t !.

In constructing the elementary propagation operatorVp(dt)
in Fourier space corresponding to Eq.~11! written in the
form

]

]t
L̂ nñ~p,n,t !5@F~p,n!2L̂ n#ñ~p,n,t ! ~12!

with L̂ n[2
1

2

]2

]n2
1

11n2

2
, ~13!

we have used the Euler-type scheme

L̂ n

ñ~p,n,t1dt !2ñ~p,n,t !

dt

5@2L̂ n1F~p,n!#
ñ~p,n,t1dt !1ñ~p,n,t !

2
. ~14!

From Eq.~14! it follows that

ñ~p,n,t1dt ![Vp~dt !ñ~p,n,t !

5F L̂ nS 11
dt

2 D2
dt

2
F~p,n!G21

3F L̂ nS 12
dt

2 D1
dt

2
F~p,n!G ñ~p,n,t !.

~15!

The operatorL̂ n in the above equation can be discretiz
with the uniform frequency mesh consisting ofM knots with
stepwidthDn. The explicit representation for this operat
on the mesh is obvious,

~ L̂ n f !~n j !52
1

2dn2
@ f ~n j 11!22 f ~n j !1 f ~n j 21!#

1
n j

211

2
f ~n j !, j 51, . . . ,M

with n j5DnS j 2
1

2D , j 50, . . . ,M .

The boundary condition for solutions that are even over
frequency variable readsf (n0)5 f (n1). Apparently, the ma-
trix of the operatorL̂ n is tridiagonal in this representation
and the inverse operator in Eq.~15! can be obtained with a
well-known ‘‘fast’’ algorithm ~see, for example,@26#!.

IV. RESULTS AND DISCUSSION

In this section we present numerical results obtained w
our approach and compare them to data from previous m
ods. In order to allow comparisons with previous results,
9-3
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TABLE I. Fundamental mode eigenvaluesl05g0
21 for a slab geometry of total length 2L. The left-hand side corresponds to the part

frequency redistribution case~PFR!. The opacityt is determined byk0
(D)L. The data presented were obtained using~i! the analytical method

of geometrical quantization technique~GQT! developed in@19,27,28#; ~ii ! the present original direct numerical method~Num.!; ~iii !
available literature sources~Others!. The right-hand side of the table refers to the complete frequency redistribution~CFR! case.

PFR CFR
Opacity GQT Num. Others GQT Num. Others

@27# @29# @19# @15#

1.0 0.4792 0.4520 0.4690 0.4985 0.4580 0.492
2.0 0.3149 0.3090 0.316 0.3346 0.3174 0.331
3.0 0.2301 0.2283 0.228 0.2478 0.2371 0.245
5.0 0.1450 0.1449 0.147 0.1585 0.1524 0.157
10 0.07098 0.07076 0.0713 0.07846 0.07558 0.0773
30 0.02047 0.02039 0.0204 0.02287 0.02167 0.0223
50 0.01190 0.01105 0.0112 0.01270 0.01205 0.0125
70 0.007773 0.007514 0.00765 0.008622 0.008191 0.0851
100 0.005188 0.005001 0.0047 0.005730 0.005447 0.00566
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have applied our method to the infinite slab and sphere,
one-dimensional geometries. In implementing our approa
we assume thatW(r ,n;t) is time independent and se
S(r ,n,t)50. This describes the most common problems
radiation trapping, as, for instance, afterglow experime
We stress, however, that none of those simplification is
essential limitation of our approach.

In our examples we have used a mesh consisting of
knots in the interval@22L;2L#, whereL is the length of the
slab. The slab itself is located in the interval@2L/2;L/2# and
is limited by the quenching function, which isWV(z)50 for
uzu,L/2 andWV(z)5„12exp$2@(uzu2L/2)/l#2%… at z>L/2
with l5L/75. Thes state for the spherical geometry can
addressed within the same scheme by considering an in
state that is odd with respect to the spatial variable. We t
200 knots in the frequency domainnP@0,6#. The time step
dt in our calculation has been taken equal to 0.04. Propa
tion over one time step with the average class Pentium
requires about 0.5 sec. We propagate the initial distribu
over 1000 time steps, although quite reliable data can
obtained with only 100 propagation steps. The converge
has been checked by varying the number of mesh points
l. The accuracy of calculations with the above-mention
parameters has been found to be within at least six~decimal!
digits. However, we point out a noticeable sensitivity of t
trapping factors on the form of the quenching functi
WV(z). That is due to the very abrupt change experienced
the distribution function beyond the boundary.

The escape factor for the fundamental mode can be
tained by examination of the time dependence of the a
correlation function

G~ t !5E
22L

2L

dzE
0

`

dnn* ~z,n,t50!•n* ~z,n,t !,

which can be fitted by a sum of exponential functio
( jGj exp(2t/gj). After a certain time, only the funda
mental mode survives; at the final timeT: n* (z,n,T)
. exp(2T/g0)•Cj50* (z,n). The higher modes (j .0) can be
02271
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obtained by propagation of an initial distribution functio
that is orthogonal to the previously calculated modes,
details see@18#.

Tables I and II contain a comparison of effective radiati
rate constantsl05g0

21 for the fundamental mode derived b
our method and results available in the literature for pla
and spherical geometries. The good agreement of our re
with numerical Monte Carlo simulations is demonstrat
also in Fig. 1, showing the behavior of the fundamen
mode escape factorg0 as a function of the opacity in a laye

Further information on the application of our method c
be derived by analyzing the frequency and space struct
of modes C̃ j (z,n)5exp(n2/2)C j* (z,n) for the basic
Holstein-Biberman equation, Eq.~1!, shown in Fig. 2. In
particular, Fig. 2~a! displays the frequency dependence of t
modes j 50 and j 51 ~solid and dotted lines, respectively!
plotted for five different positionszi @indicated by straight
vertical lines in Fig. 2~b!# for a layer with opacity 3 (L/2
51.5).3 The spherical fundamental mode case~correspond-
ing to radial modal indexnr50) has been treated here as t
case with plane modal indexj 51 for the slab, assuming its
lengthL/25R. Figure 2~b! shows the spatial dependence
the mode, calculated at the line center. For the sake of cla
in this figure the slab lengthL/2 has been slightly rescaled i
the computation of thej 51 mode, and taken equal to 1.56

Figure 2~a! demonstrates an important feature of t
eigenmodes: their spatial and frequency dependencies ca
factorized with quite high precision, since the ratiow̃z(n)
5C̃ j (z,n)/C̃ j (z,n50) depends very weakly on the spa
positionz. In the pictorial representation given in the figur
this circumstance leads to hardly distinguishable curves
the five differentzi positions considered. In other words, on
can omit thez dependence of the profilew̃z(n) and, hence,
write the quite accurate relation

3Sometimes~as in the case of Fig. 2! it is convenient to setk0
(D)

51 and considerL as the slab opacity.
9-4
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TABLE II. Fundamental mode eigenvaluesl0 for thes-symmetry state in a spherical vapor cell of radiusR. The opacityt is determined
by k0

(D)R. All notations are the same as for Table I.

PFR CFR
Opacity GQT Num. Others GQT Num. Others

@27# @19# @30#

0.2 0.9392 0.948 0.9462 0.9481 0.944
0.4 0.8904 0.897 0.8970 0.8995 0.896
0.6 0.8441 0.848 0.8517 0.8544 0.852
1.0 0.7601 0.7628 0.7712 0.7736 0.773
2.0 0.5981 0.6009 0.6148 0.6165 0.618
3.0 0.4841 0.4872 0.5033 0.5047 0.506
5.0 0.3391 0.3424 0.3590 0.3602 0.359
10 0.1799 0.1824 0.1956 0.1963 0.195
30 0.05333 0.05412 0.05951 0.05964 0.0597
50 0.02948 0.02976 0.03296 0.03304 0.0333
70 0.01940 0.02018 0.02228 0.02234 0.0226
110 0.01322 0.01329 0.01473 0.01473 0.0150
220 0.005983 0.005962 0.006618 0.006597 0.00671
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C j* ~z,n!> exp~2n2/2!w̃~n!C j* ~z,n50![C̃* ~z!w~n!,
~16!

playing an important role in the semiclassical treatment@27#
of radiation transfer processes with partial frequency re
tribution ~PFR!.

Figure 2~b! gives an idea of how rapidly the modes vani
outside the layer due to the presence of the quenching f
tion WV(z) determined above.

By analyzing the eigenmode structure, one can infer t
the problem of trapped radiation escape from a cell wit
certain initial space and frequency distribution of the exci

FIG. 1. Fundamental mode escape factorg0 for a layer of total
lengthL as a function of the dimensionless opacityt5k0

(D)L. The
solid line corresponds to the present numerical method; dots ar
results of a Monte Carlo simulation@21# for the PFR case.
02271
-
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at
a
d

atoms, n* (z,n,t50), consists of two stages. At the firs
stage, prompt relaxation of initial frequency distribution
the lowest-frequency mode occurs in the time scale of a n
ral radiation lifetime@27,31#. Then, the frequency relaxatio
is concluded and spatial relaxation within the manifold of t
eigenmodes related to the lowest-frequency mode proce
which is a substantially slower process. Qualitatively, t
stage resembles relaxation of the excited atoms for the C
case, since for the fundamental modes the DFR and the C
cases are rather similar~see escape factor data in Tables I a
II !. When considered together, these two mechanisms
produce interesting peculiarities in the time dependence
the escaping radiation intensityJ(t), which can be calculated
as the time derivative of the total numberN(t)
[*2L/2

L/2 dz*2`
` dnn* (z,n,t) of the excited atoms,

J~ t ![2
1

N~ t50!

d

dt
N~ t !, E

0

`

dtJ~ t !51.

If a photon escapes from the cell, the integrated excited-s
density must decrease by one emitting atom. Note that
normalization condition onJ(t) corresponds to one excite
atom at timet50. In Fig. 3 we give an example ofJ(t) for
a few values of the frequencyn i , which determines the cen
ter of initial spectral distribution of the atoms, taken in th
form

n* ~z,n,t50!5N* ~z,t50!w~n,t50!

5exp@2400z2/~L2!#exp@210~n2n i !
2#.

~17!

The present approach turns out to be a perfect tool for di
investigation of various nonstationary problems and it allo
one to follow directly the time evolution of the excited ato
distribution in the cell.

he
9-5
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A. K. KAZANSKY et al. PHYSICAL REVIEW A 64 022719
In the curves presented in Fig. 3 one can discern the
stages described above. First@Fig. 3~a!#, the intensities of the
radiation for different initialn i reaches an approximatel
unique value, which is related to the relaxation of the f
quency modes to the lowest mode with the Doppler distri
tion ~dotted curve!. This stage strongly depends on the val
of the central frequencyn i , which determines the intensitie
of various frequency modes in the expansion of the ini
frequency distribution over the eigenmodes. At the sec
stage@Fig. 3~b!#, relaxation of the spatial modes related
the lowest-frequency mode occurs. A specific growth of

FIG. 2. Illustration of the factorization property, Eq.~16!, for
modesC j* (z,n). ~a! Frequency dependence of the two first mod

C̃ j (zi ,n) with j 50,1 ~solid and dotted lines, respectively! plotted
in the case of a slab with opacityk0

(D)L53 for five different posi-
tions zi @corresponding positions are indicated by vertical strai
lines in the plot of panel~b!#. The dimensionless variablen is the
detuning measured in units of the Doppler widthDn (D). All curves
are normalized to the unit value at the line center; note that, du
the weak dependence of the function on the space coordinate
cussed in the text, curves for different positions appear hardly
tinguishable from each other and no labeling can be applied.~b!

Space dependence of the two first modesC̃ j (z,n50) with j 50,1
~solid and dotted lines, respectively! for the same slab as in pane
~a!, but, for the sake of clarity, the slab opacity has been rescale
3.12 for the second mode (j 51). We assumek0

(D)51 and, thus,
consider the dimensionless coordinatez as the opacity of the ga
layer situated between the space pointz and the slab center.
02271
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intensityJ(t) at some stage of the decay process@32# can be
of importance in practically occurring experimental cond
tions. It can take place because the coefficients in the exp
sion of the initial state, projected on the lowest-frequen
mode, can carry different signs for different spatial mod
see also@27#. Figure 3 should be compared with Fig. 7
Ref. @27#, where the same intensitiesJ(t) have been calcu-
lated within the frame of the analytical geometrical quan
zation technique~GQT!. One can infer that both method
give very similar quantitative results. Some deviations b
tween ourJ(t) curves and those in@27# are related to the
different representation of the initial frequency distributio
function w(n,t50), which in the semiclassical calculation
was taken as ad functionw(n,t50)5d (1)(n2n i) instead of
the form employed here, Eq.~17!.

As a curious example, useful to better point out the ca
bilities of our method, we demonstrate in Fig. 4 one mo
possible type of decaying fluorescenceJ(t) for an initial fre-
quency profilew(n,t50) with a DFR mechanism. Atoms
first excited by monochromatic laser pulses at frequencyn i ,
then emit photons in accordance with Eq.~4!,

n* ~z,n,t50!5exp@2400z2/~L2!#erf~max$unu,un i u%!.
~18!

The most interesting feature of decaying processes involv
radiation trapping with DFR appears in Fig. 4 as a seque
of decreasing-increasing-decreasing slopes4 for some of the

4We call attention to the fact that no cascade processes can o
in a system of two-level atoms discussed here.

s

t

to
is-
s-

to

FIG. 3. Temporal behavior of the total intensityJ(t) of escaping
radiation under afterglow conditions. Initially a slab of total leng
L with opacityt530 is excited at its central partuzu,0.1(L/2) in
accordance with Eq.~17!. The initial frequenciesn i of the excita-
tion are related to the opacitiest i5t exp(2ni

2)530, 20, 15, 10, 5, 4,
3, as specified close to each curve. The dotted line represent
CFR case. Timet and intensityJ(t) are measured in units of spon
taneous decay lifetimeA21

21 and radiative rate constantA21, respec-
tively. Panels~a! and ~b! display initial and intermediate stages o
the decaying process, respectively. Note the different horizontal
vertical axes.
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displayedJ(t) curves, namely those calculated for freque
ciesn i with t i57,5,3. Obviously, tailoring of the initial pro
file of excited atoms can allow one to obtain various tim
dependencies of the escaping radiation intensity, worth to
demonstrated in specific experimental conditions.

V. CONCLUSIONS

We have presented a method for the computation of
diation trapping with partial frequency redistribution due
the Doppler effect. This method is extremely efficient n
merically. It computes the time evolution of the excited-st
distribution, using onlyO(N ln N) multiplications for each
time step, whereN5NrM n , i.e., the total number of discreti
zation points in the space-frequency mesh. It is worthwh
to compare our technique to previously proposed comp
tion methods. In the propagator function method@17#, one
deals with a similar mesh, and also directly computes
temporal evolution. Since the propagation from each d
cretization point to each other is computed, the numer
effort is O(N 2). Considering the large number of discretiz
tion points one needs in PFR problems, the savings offe
by our method is significant. A comparison of the numeri
effort of Monte Carlo simulations is somewhat more dif
cult, since it strongly depends on the required accuracy.
number of photons that have to be simulated depends on
square of the required accuracy, so that they are suit
mainly for ‘‘quick-and-dirty’’ simulations. Furthermore, the
implementation is more problematic at high opacities. F
our method, as well as the PFM, we can increase the step
of the temporal evolution when observing the decay of
spatial modes. For Monte Carlo simulations, a similar
proach requires sophisticated ‘‘weighting’’ of photons and
furthermore numerically unstable@2#.

FIG. 4. Same as Fig. 3, but the initial frequency-dependent
cited atoms distribution is taken as described in Eq.~18!.
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Comparison to the piecewise-constant approximation a
demonstrates the advantage of the present method. Sin
requires the solution of an eigenvalue problem, the numer
effort increases withN asO(N3). On the other hand, it doe
not require progression through time steps, and gives
modes simultaneously. Its main drawback is, however,
large storage requirements, and also numerical problem
many commercial eigenvalue solving packages, whenN be-
comes large.

Our method is efficient and numerically robust for a lar
range of parameters. We have used it to point out some
damental properties of the decay process with DFR. Es
cially, the decay of the higher-frequency modes takes pl
on a much faster scale~essentially one natural lifetime! than
the decay of the spatial modes. A very promising feature
the present approach is related to its applicability to dir
and exhaustive investigation of fast nonstationary proces
This feature may be the most important advantage of
method, since spectroscopic methods requiring the sep
tion of ultrafast signals are currently being developed.

Future investigations will concentrate on extending o
approach to other types of redistribution functions. We wo
suggest that the approximate factorization of modes
pressed by Eq.~16! is a fundamental property of the prob
lem. Note that the factorization of the eigenmodes is equi
lent to the separation of space and frequency variables an
validity can be demonstrated within the semiclassical
proximation@27#. The purpose of further numerical simula
tions is both testing this hypothesis and treating radiat
energy-transfer effects for more general experimental si
tions including, for instance, a system of cold atoms obtain
in magneto–optical traps@6#.

Another, more traditional, field of the split-propagatio
technique applications deals with solution of local diffusi
equations of the Fokker-Planck type widely occurring
plasma physics~kinetic Boltzmann equations! and chemistry
physics~diffusion equations!. The above described trick, re
ducing the account for boundary conditions to enter
quenching rate functions into kinetic equations, allows us
study different problems with nonstationary parameters
phase volumes. We mention, as an example, a stoch
walk of a Rydberg electron in an elementary collision rea
tion @33# where changes of the available ‘‘size’’ of the ener
space for the bound optical electron are caused by an in
nuclear motion of colliding atoms.
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