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Direct numerical method to solve radiation trapping problems with a Doppler-broadening
mechanism for partial frequency redistribution
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We present a numerical method for solving the Holstein-Biberman-Payne equation with Doppler frequency
redistribution. The method is based on direct time propagation of the initial distribution of excited atoms,
employing the split-propagation technique. It allows a precise study of various aspects of radiation transfer
phenomena occurring in an arbitrary convex three-dimensional spatial region, driven by external conditions
with arbitrary time dependencies. We present some results obtained for slab and spherically shaped geometries
and compare them to results from other evaluation methods. The efficiency of the method is demonstrated by
determining the intensity of radiation escaping the gas cell in afterglow experiments.
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[. INTRODUCTION ability that a photon that is absorbed with frequengyis
reemitted with frequency:.,. In the following years, several
In optically thick media, photons can be absorbed andnethods have been developed for solving numeritahs
reemitted repeatedly before escaping from the medium. Thigeneralized Holstein-Biberman equation, which includes the
process is known as radiation trappifiy2] and plays an partial frequency redistribution. Hdli.3] developed an itera-
important role in various physical proces$#s3] and differ-  tive approach for computing the velocity distribution of the
ent engineering applicatiori,4]. In laboratory conditions, excited atomswhich is related to the frequencies of pho-
dealing with both thermal and laser-cooled atomic systemgong as well as their density, but this approach is numeri-
(see, for instancé,6]) the radiation trapping has to be often ¢4y efficient only at very low opacities. van Trift4] ana-
carefully can|dered in the quantitative analysis of eXperiqyzed the limiting behavior of the trapping factor at very high
mental findingd2,7,8. . . . opacities. We point out that an approach was already devel-
It is well known that the dynamics of radiation trapping is oped in Ref[5] suitable for computing the radiation behav-

g(_)verned by an '”t‘?gr‘?'d'ﬁere“?'a?' equatloﬁhlolsteln-_ ior during the first moments of an afterglow experiment, but
Biberman equation which is very difficult to solve even in . ;
this approach loses accuracy at later times.

its simplest form{7,9]. The main difficulty arises from the Exact solutions at all opacities can also be obtained by

divergence of the photon mean free pdfj. That is why . .

studies of radiation trapping in medium geometries, i.e., ga arious numerical methods. Among them, the Monte Qarlo

cells, of the simplest one-dimensional shafiefinite layer, ~Simulationsisee, e.g/[15]) are quite popular, due to the sim-

infinite cylinder, sphereled to a remarkable variety of spe- PliCity of the relevant computer codes. However, the run time
f Monte Carlo simulations quickly becomes prohibitive as

cific and sophisticated techniques and approximating recipe e h cal hods f |
for constructing the relevant solutiofid—4,10. the opacity increases. Two other numerical methods for solv-

One major assumption in all early investigations of radia-ing radiation trapping problems with partial frequency redis-

tion trapping was that of complete frequency redistribution(fiPution are the piecewise-con_stant approximati&rCA)
(CFR). This implies that the frequency of a reemitted photon16: @nd the propagator function methd®FM) [17]. It
is independent of the frequency of the photon that was prer_nust be noted, however, that 'the numerical efforts required
viously absorbed. When the frequency redistribution is domiPY these methods are also quite large. .

nated by the Doppler effect, this assumption cannot be A NOVel, highly accurate numerical method for solving the
strictly valid: if the absorbed photon has a high_frequenCWolstgm—Blberman radiation transfer equation in finite ge-
shift (compared to the center frequency of the considere@Metries has been put forward recerthg]. That method
transition), then the absorbing atom should have a high vec&" be applied to the investigation of radiation trapping in
locity, and thus it is more probable that the emitted photor{ three-dimensional gas cells of arbitrdcpnvey shape,
also has a high Doppler shift. This circumstance was alread ut with the assumption of complete frequency redistribution
recognized by Holsteif9], but intentionally ignored by him

to reduce mathematical difficulties. Later, Humnh&t] dis-

cussed the frequency redistribution mechanism and de-Exact analytical solutions are only possible in infinite space, see,
scribed the frequency redistribution function, i.e., the prob-e.g.,[12].
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(CFR). In the current paper, we extend that technique towhereR,,, is the frequency redistribution kernel ar@v) is
Doppler frequency redistributiofthe DFR casge We show  the spectral absorption coefficient. For the case of pure Dop-
that this approach is not only accurate at all opacities, bupler broadening5]

that it also requires substantially smaller computational effort .

than previous methods. k(1)=kP () =P exp—1?), «k=Jmc?, 3

1
II. THE BASIC TRAPPING EQUATION Rw,zzerf(max{|v|,| Vr|})_ %)

The fundamental problem we address in this paper can be
described with a basic equation, the generalized Holsteinyere, «(°) is the absorption coefficient at the center of the
Biberman equatioi2,5], which determines the time evolu- pgppler-broadened spectral line, and the dimensionless fre-
tion of the frequency-dependent density function of the eXquency is the offset of the frequency measured from the
cited atomsn*(r,v,t), over the space coordinateand the  |ine center in units of the Doppler width »(®). It is worthy
frequencyv (the frequency distribution is related to the ve- o note that a nontrivial evolution occurs only for those com-

locity distribution of the atom$3]): ponents of the function* (r,»,t) that are even with respect
to v.
an* (r,v,t) Actually, E i
__ * _ ) y, Eqg. (1) describes a class of transfer processes
at Ao (1, 1,1) = AgW(T, v O™ (1, 1 1) broader than the conventional radiation trapping problems.

. Indeed, the class of problems we can treat within the present
+A21f d”,f dr'G,, ([r—r']) approach can be specified as those for whichithdepen-

— Q dence of the(spatially uniform) propagatorG,,(p) can be
related to the Green'’s function of a second-order differential
operator over a variable. A variety of relevant problems

_ can be found, for instance, in plasma phygick
The productA,;n* (r,v,t)dwrdv gives the number of pho-

tons emitted spontaneously in the frequency intefugly
+dv] by the excited atoms contained in the voludreper
one s;econdA{l1 is the natural lifetime of the excited stéte. Recently, we proposed a general computational algorithm
The quantityw(r,v;t) is the dimensionless rafee., the rate  [18] that allows us to investigate the radiation trapping dy-
divided by A,;) of the nonradiative quenching of excited namics in any arbitrary convex three-dimensio(@D) re-
atoms by soméunspecifiedl processes. In what follows we gion driven by arbitrary nonstationary excitation and quench-
assume that the quenching rafg,(r,»;t) is very large out- ing processes. That approach has been developed only for the
side a given cell of volume). This trick makes sure that CFR case and here we describe its extension to DFR.
there are no excited-state atoms outside the cell even if we The numerical method follows directly the temporal evo-
let the integration volume in Ed1) extend over the entire lution of the functionn* (r,»,t) at the knots of a spatial and
spacd19]. The propagatoG,, (|r—r’|) describes the pho- frequency mesh, starting from an initial distribution function.
ton transfer from an emitting atom to an absorbing one. Théuch a method is efficient only if an algorithm exists that
term S(r,v,t) provides a(nonstationary source of excited allows one to make one step in time propagation with a
atoms, e.g., their pumping via external excitation from a la<elatively small number of multiplication operations. Algo-
ser beam, energy-pooling collisions, or other mechanisms. rithms that achieve this witd(N InN) multiplications per

We note that Eq(1) still uses several simplifying assump- time step { is the total number of knots in the mesh used in
tions [2]. In particular, we do not consider the polarization calculation are referred to as “fast,” and their introduction
and alignment phenomena discusse{2id]. These phenom- ten years ago has produced proliferating activities in a num-
ena can be studied with the present approach by treatiniger of branches of theoretical physics, such as theoretical
n*(r,v,t) not as a scalar quantity, but as a correspondinghemical physics, theoretical atomic physics, solid-state

xXn*(r", v t)+S(r,v,t). (1)

IIl. SPLIT PROPAGATION TECHNIQUE

spherical tensof21]. physics, etc.(see, e.g.[22,23). To our knowledge, there
To formulate our problem, we specify the propagatorhave been no attempts to apply this very powerful method to
G, (p), the investigation of radiation trapping processes before Ref.
[18].
. 1 For solving Eq.(1) we use the so called split-propagation
G, (p)=«kR,, ——exd—px(v')] method[24,25 which is based on the following statement:
Amp Let the operatoH be a sumH = A+ B of two noncommuting
" operators. Then, the operator evolution of the system over
with ?EJ’ dvk(v), (2)  time-step intervabt (assumed to be small enoyghy(4t),
- can be approximated as a product of the partial evolution
operators,
2In what follows we sef\,,=1, so that all decay times refer to the _ 1 1 3
‘natural” fime scale. ’ Un(ot)= UA(E &) Us( &)UA(_ o+oer), O
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Up(dt)=exp(— 8tD) with D=A,B,H. (6) and
2
Within the split propagation approach, we construct the np,v,t)= ex;{ ! ) *(p,v,t).
time-propagator operatadd(ét) for Eq. (1) in the following

form: In constructing the elementary propagation operatg(ét)

in Fourier space corresponding to EdJ1) written in the

ot -1
rovt+ o || Fp V() F form

2

ot
U(dt)= exr{ - 7WQ

L.n(p,»,t)=[®(p,»)—L,In(p,v,t) (12)

6t ﬁt at 14
Xexg — EWQ r,V,t+? (7)
. . 1% 1+1°
The symbolZ, denotes the Fourier transform operator acting with |_ =—5—+ ; (13
on functions 2 g 2
5 dr we have used the Euler-type scheme
A=t [ —“reqipnirn  ® .
(2m)™ n(p,v,t+6t)—n(p,,t)
over the space variables, whife, ! gives it inverse from the ’ ot
Fourier space variablp back to the coordinate variabte i L4 1)+ T 9
- ~ n 1V1 n 1V1

The elementary propagatdr,(St) corresponds to the re —[-L,+®(p,»)] p p . (9
duced equation 2

an*(r,v,t) ® From Eq.(14) it follows that

T:—n*(r,v,t)—i-f dv’f 3dl"G,,,,,

R (P, v,t+ 8=V, (8t)(p,,t)
X(|r_r,|)n*(rlyv,1t)! (9) -1
describing the radiation transfer in an infinite spRSewith- - [ L1t 5520w
out quenching processes st
Universally, Eq.(9) is an integral equation over the fre- <t 1=+ Z g ~ t

guency variable. It seems that no universal and fast algo- v 2 2 (P, ¥) (P, »,1).
rithm for constructing the evolution operator for such situa- (15)

tions is known as yet. Fortunately, in the DFR case it may be

directly shown that the following identity holds: The operatol_ , in the above equation can be discretized

with the uniform frequency mesh consistinghfknots with

_ E‘?_2+ 1+_”2 exr<12>R stepwidthAwv. The explicit representation for this operator
2 912 2 2)" on the mesh is obvious,
2 ~
J—ex - —)[5(1)(1/ v')+8B(v+v)], (LHw)=~- m[f(vm)—Zf(wH f(vj-1]
(10 v2+1

N _ _ + L fw), j=1,... M
where 6 is the Dirac delta function. Formally, the kernel 2

R, in EQ. (4) is the Green’s function of the second-order 1
differential operator of a quantum oscillator type. Due to Eq. with ,,J:A,,( ji— _>, i=0,... M.
(10), Eqg. (9) can be converted into the differential form in

Fourier space: . .
P The boundary condition for solutions that are even over the

frequency variable readq vy) = f(v4). Apparently, the ma-
n(p,v,t)=d(p,v)n(p,v,t) trix of the operator , is tridiagonal in this representation,
and the inverse operator in E(L5) can be obtained with a
1D \ell-known “fast’ algorithm (see, for exampld,26]).

1 0% 1+4°

2 912 2

—+1
at

with ®(p,v) given by the Fourier transform from the inte-

gral kernelG,,,(p) [3], IV. RESULTS AND DISCUSSION
(®)(1) Il In this section we present numerical results obtained with
d(p,v) arcta P our approach and compare them to data from previous meth-
|pl kP (v) ods. In order to allow comparisons with previous results, we
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TABLE I. Fundamental mode eigenvalulegzggl for a slab geometry of total lengthL.2 The left-hand side corresponds to the partial
frequency redistribution cag®FR). The opacityr is determined by<§)D)L. The data presented were obtained usinghe analytical method
of geometrical quantization techniq&QT) developed in[19,27,2§; (ii) the present original direct numerical meth@dum.); (iii)
available literature sourcé®thers. The right-hand side of the table refers to the complete frequency redistrid@fR) case.

PFR CFR

Opacity GQT Num. Others GQT Num. Others

[27] [29] [19] [15]
1.0 0.4792 0.4520 0.4690 0.4985 0.4580 0.492
2.0 0.3149 0.3090 0.316 0.3346 0.3174 0.331
3.0 0.2301 0.2283 0.228 0.2478 0.2371 0.245
5.0 0.1450 0.1449 0.147 0.1585 0.1524 0.157
10 0.07098 0.07076 0.0713 0.07846 0.07558 0.0773
30 0.02047 0.02039 0.0204 0.02287 0.02167 0.0223
50 0.01190 0.01105 0.0112 0.01270 0.01205 0.0125
70 0.007773 0.007514 0.00765 0.008622 0.008191 0.0851
100 0.005188 0.005001 0.0047 0.005730 0.005447 0.00566

have applied our method to the infinite slab and sphere, i.egbtained by propagation of an initial distribution function
one-dimensional geometries. In implementing our approachthat is orthogonal to the previously calculated modes, for
we assume thaW(r,»;t) is time independent and set details seg18].
S(r,v,t)=0. This describes the most common problems in  Tables | and Il contain a comparison of effective radiative
radiation trapping, as, for instance, afterglow experimentsate constants =g, * for the fundamental mode derived by
We stress, however, that none of those simplification is ayur method and results available in the literature for plane
essential limitation of our approach. and spherical geometries. The good agreement of our results
In our examples we have used a mesh consisting of 51gith numerical Monte Carlo simulations is demonstrated
knots in the interval —2L;2L |, whereL is the length of the 3150 in Fig. 1, showing the behavior of the fundamental
slab. The slab itself is located in the interyal L/2;L/2] and  mode escape factgy, as a function of the opacity in a layer.
is limited by the quenching function, which W, (z) =0 for Further information on the application of our method can
|thﬁ |)—\/2 I?P?dsw'lqrgZ):t(lt_ ?Xp{t;[(|2|?1|-/.2)/l)\]2}) attZB L/2 ] be derived by analyzing the frequency and space structures
with A= . Thes state for the spherical geometry can be 3 _ * -
addressed within the same scheme by considering an initi%folsrpeci)r?_essiblepri,r(é: )eqizﬁ)igjznlz)gﬂll)(z’:r)]ov\fgrintr::?g. t;as:ﬁ
state that is odd with respect to the spatial variable. We takﬁarticular, Fig. 2a) displays th’e freqL,Jency dependence of the
20(.) knots in the _frequency domain=[0,6]. The time step modesj=0 andj=1 (solid and dotted lines, respectivgly
ot in our calculation has been taken equal to 0.04. Propaga; ey for five different positiong; [indicated by straight

tion over one time step with the average class Pentium P ertical lines in Fig. 2b)] for a layer with opacity 3 I(/2

requires about 0.5 sec. We propagate the initial distribution:1 5) 3 The spherical fundamental mode caserrespond-

over 1000 time steps, although quite reliable data can bﬁ1g to radial modal index, =0) has been treated here as the

obtained with only 100 propagation steps. The convergencggalse with plane modal indep=1 for the slab, assuming its

- The aceuracy of caiculations with the above.mentionecndthL/2=R Figure 2b) shows the spatial dependence of
j y he mode, calculated at the line center. For the sake of clarity,

S?ri?smﬁg\r;egeeli t\);een I)?#tngut:)abﬁg;gng?et If;?éﬁﬁﬂ thein this figure the slab length/2 has been slightly rescaled in
grts- ' P . R 1 computation of th¢=1 mode, and taken equal to 1.56.
trapping factors on the form of the quenching function Figure 2a) demonstrates an important feature of the

Wq(2). That is due to the very abrupt change experienced by T : .
the distribution function beyond the boundary. %lgenmodes. their spatial and frequency dependencies can be

The escape factor for the fundamental mode can be of@ctorized with quite high precision, since the rafio(v)

tained by examination of the time dependence of the auto=V(z, V)/‘T’j(Z,V=0) depends very weakly on the space
correlation function positionz. In the pictorial representation given in the figure,

this circumstance leads to hardly distinguishable curves for
2L S . the five differentz; positions considered. In other words, one
GH= J,ZLdZJO dvn*(z,v,t=0)-n*(z,»,0), can omit thez dependence of the profiie,(») and, hence,

write the quite accurate relation

which can be fitted by a sum of exponential functions

2;Gjexp(-t/g;). After a certain time, only the funda-

mental mode survives; at the final time n*(z,v,T) 3Sometimegas in the case of Fig.)dt is convenient to sek(’

= exp(—T/go)-‘I'J*:O(z,v). The higher modesj(0) can be =1 and considet as the slab opacity.
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TABLE Il. Fundamental mode eigenvalukg for the s-symmetry state in a spherical vapor cell of radtus'he opacityr is determined
by «{?’R. All notations are the same as for Table I.

PFR CFR
Opacity GQT Num. Others GQT Num. Others
[27] [19] [30]

0.2 0.9392 0.948 0.9462 0.9481 0.944
0.4 0.8904 0.897 0.8970 0.8995 0.896
0.6 0.8441 0.848 0.8517 0.8544 0.852
1.0 0.7601 0.7628 0.7712 0.7736 0.773
2.0 0.5981 0.6009 0.6148 0.6165 0.618
3.0 0.4841 0.4872 0.5033 0.5047 0.506
5.0 0.3391 0.3424 0.3590 0.3602 0.359
10 0.1799 0.1824 0.1956 0.1963 0.195
30 0.05333 0.05412 0.05951 0.05964 0.0597
50 0.02948 0.02976 0.03296 0.03304 0.0333
70 0.01940 0.02018 0.02228 0.02234 0.0226
110 0.01322 0.01329 0.01473 0.01473 0.0150
220 0.005983 0.005962 0.006618 0.006597 0.00671

W (z,v)= exp — v42)(v) ¥} (2,v=0)=T*(2) o(v),
(16)

playing an important role in the semiclassical treatn&ii

of radiation transfer processes with partial frequency red'séigenmo des related to the lowest-frequency mode proceeds,

tribution (PFR.

Figure 2b) gives an idea of how rapidly the modes vanish
outside the layer due to the presence of the quenching fun
tion Wq(2) determined above.

By analyzing the eigenmode structure, one can infer th
the problem of trapped radiation escape from a cell with a
certain initial space and frequency distribution of the excite

1000

Trapping factor g,

-
o
o

_
o

atoms, n*(z,»,t=0), consists of two stages. At the first

stage, prompt relaxation of initial frequency distribution to

the lowest-frequency mode occurs in the time scale of a natu-

total

ral radiation lifetime[27,31. Then, the frequency relaxation
is concluded and spatial relaxation within the manifold of the

which is a substantially slower process. Qualitatively, this
g_tage resembles relaxation of the excited atoms for the CFR
Case, since for the fundamental modes the DFR and the CFR
ases are rather similésee escape factor data in Tables | and
1). When considered together, these two mechanisms can
roduce interesting peculiarities in the time dependence of
he escaping radiation intensiiyt), which can be calculated

as the time derivative of the numbelN(t)

=[2,dz[* dvn*(z,v,t) of the excited atoms,

B 1 d % -
J(t)=—maN(t), fo dtJ(t)=1.

If a photon escapes from the cell, the integrated excited-state
density must decrease by one emitting atom. Note that the
normalization condition ord(t) corresponds to one excited
atom at timet=0. In Fig. 3 we give an example dft) for

a few values of the frequenay , which determines the cen-
ter of initial spectral distribution of the atoms, taken in the

form

n*(z,v,t=0)=N*(z,t=0)¢(v,t=0)

I 1 L 1 L1 11 II L 1 L L1111 I
1 10 100 =ex{ —400z%/(L?)]exd — 10(v— v;)?].
Opacity KO(D) L (17)

FIG. 1. Fundamental mode escape faggrfor a layer of total ~ The present approach turns out to be a perfect tool for direct
lengthL as a function of the dimensionless opacity «.”’L. The  investigation of various nonstationary problems and it allows
solid line corresponds to the present numerical method; dots are thgne to follow directly the time evolution of the excited atom
results of a Monte Carlo simulatidr21] for the PFR case. distribution in the cell.
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FIG. 3. Temporal behavior of the total intensitft) of escaping
0 = radiation under afterglow conditions. Initially a slab of total length
— ! : L with opacity =30 is excited at its central pajz| <0.1(L/2) in
i -6 accordance with Eq.17). The initial frequencies; of the excita-
N tion are related to the opacities= 7 exp(— vi2)=30, 20, 15, 10, 5, 4,
= 12| 3, as specified close to each curve. The dotted line represents the
1> CFR case. Time and intensityJ(t) are measured in units of spon-
= gl taneous decay lifetima,;* and radiative rate constafb,, respec-
tively. Panels(a) and (b) display initial and intermediate stages of
24 |l the decaying process, respectively. Note the different horizontal and
vertical axes.
0.0 0.5 1.0 intensityJ(t) at some stage of the decay procg32] can be

z of importance in practically occurring experimental condi-
tions. It can take place because the coefficients in the expan-
sion of the initial state, projected on the lowest-frequency
mode, can carry different signs for different spatial modes,
see alsd27]. Figure 3 should be compared with Fig. 7 in
Ref.[27], where the same intensitid§t) have been calcu-
lated within the frame of the analytical geometrical quanti-
detuning measured in units of the Doppler widkhr®). All curves zattion techmque(GQT). 'Or.Ie can infer that both 'm'ethods
are normalized to the unit value at the line center; note that, due 1g'Ve Very similar quantitative reSL_JIts. Some deviations be-
the weak dependence of the function on the space coordinate dig\f_veen ourJ(t) curve; and those_|ﬁ27] are relate(,j tc_) th?
cussed in the text, curves for different positions appear hardly disd'ffer_ent representatlon Of_ the initial _frequgncy dlstrlbl_Jtlon
tinguishable from each other and no labeling can be applied. function ¢(»,t=0), V‘_’h'Ch in the Sem(lf)lassmal .Calculatlons
Space dependence of the two first modegz,»=0) with j=0,1  Was taken as @ function¢(,t=0)=5"(v—;) instead of
(solid and dotted lines, respectivelfor the same slab as in panel the form employed here, EL7). .
(a), but, for the sake of clarity, the slab opacity has been rescaled to_AS & curious example, useful to better point out the capa-
3.12 for the second modg£1). We assumec®=1 and, thus, Dilities of our method, we demonstrate in Fig. 4 one more
consider the dimensionless coordinatas the opacity of the gas POssible type of decaying fluorescerl{¢) for an initial fre-
layer situated between the space pdiind the slab center. quency profilee(v,t=0) with a DFR mechanism. Atoms,
first excited by monochromatic laser pulses at frequengy

In the curves presented in Fig. 3 one can discern the qwien emit photons in accordance with &4,
stages described above. FirBtg. 3(@)], the intensities of the n* (2, ,t=0) = exif — 4002%/(L2)]erf(max| o], | »i]}).
(18)

FIG. 2. lllustration of the factorization property, EQL6), for
modes\lf]*(z,v). (a) Frequency dependence of the two first modes
\Tfj(zi ,v) with j=0,1 (solid and dotted lines, respectivglglotted
in the case of a slab with opaciwf®’L=3 for five different posi-
tions z; [corresponding positions are indicated by vertical straight,

lines in the plot of pane(b)]. The dimensionless variable is the

radiation for different initialv; reaches an approximately

unique value, which is related to the relaxation of the fre- ) . . ) .
quency modes to the lowest mode with the Doppler distribu-T e most interesting feature of decaying processes involving

tion (dotted curv This stage strongly depends on the value'@diation trapping with DFR appears in Fig. 4 as a sequence
of the central frequency, , which determines the intensities °f decreasing-increasing-decreasing slbffes some of the

of various frequency modes in the expansion of the initial

frequency distribution over the eigenmodes. At the second

stage[Fig. 3b)], relaxation of the spatial modes related to “we call attention to the fact that no cascade processes can occur
the lowest-frequency mode occurs. A specific growth of thein a system of two-level atoms discussed here.
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0.08 (a) 0.018 (b) Comparison to the piecewise-constant approximation also
demonstrates the advantage of the present method. Since it
0.016 | requires the solution of an eigenvalue problem, the numerical
0.06 effort increases wittN asO(N®). On the other hand, it does

0.014l 30 not require progression through time steps, and gives all
modes simultaneously. Its main drawback is, however, the
large storage requirements, and also numerical problems in
many commercial eigenvalue solving packages, wiKdre-
comes large.

Our method is efficient and numerically robust for a large
range of parameters. We have used it to point out some fun-
damental properties of the decay process with DFR. Espe-
cially, the decay of the higher-frequency modes takes place

0.012

J(t)

0.04

0.02

/
Ne 19 on a much faster scalessentially one natural lifetimehan

0.00 the decay of the spatial modes. A very promising feature of
the present approach is related to its applicability to direct
and exhaustive investigation of fast nonstationary processes.
This feature may be the most important advantage of the
method, since spectroscopic methods requiring the separa-
tion of ultrafast signals are currently being developed.

Future investigations will concentrate on extending our
approach to other types of redistribution functions. We would
suggest that the approximate factorization of modes ex-

ressed by Eq(16) is a fundamental property of the prob-

m. Note that the factorization of the eigenmodes is equiva-
lent to the separation of space and frequency variables and its
validity can be demonstrated within the semiclassical ap-
V. CONCLUSIONS proximation[27]. The purpose of further numerical simula-

tions is both testing this hypothesis and treating radiation
We have presented a method for the computation of ragnergy—tran_sfer eff_ects for more general experimental sjtua—
diation trapping with partial frequency redistribution due to tions including, f_or instance, a system of cold atoms obtained
the Doppler effect. This method is extremely efficient nu-" magneto—optical trapss].

merically. It computes the time evolution of the excited-statet ﬁnpther, m?re tj[radlt(ljonelll, f'ilr? Ofl tthe sahlt-prolpdg?fanpn
distribution, using onlyO(N In N) multiplications for each echnique applications deais with solution ot local diftusion

time step, wher&dl=N;M ,, i.e., the total number of discreti- elquatlonsh Of. tshkg Ft(')kléerljtPlanck type t.vv:j]de% Oﬁcur'rn:g n
zation points in the space-frequency mesh. It is worthwhile?25Ma PRYSICEINELc Bofizmann equationsand chemistry

to compare our technique to previously proposed computaghzsrlcs(tdh'gu:l'ggoegga:ctc')?nﬁ;-r:]eds:m\geoggi%rr']betzomgﬁ’tére.;]
tion methods. In the propagator function metHdd], one ucing u u y tons 'ng

deals with a similar mesh, and also directly computes th@uenching rate functions into kinetic equations, allows us to

temporal evolution. Since the propagation from each dis-Str:J;ged\'/fofi:?nngspr\?vtgemzn\ggg r;c;n?sﬂgg:rr%/ I%arzms?girﬁagtfic
cretization point to each other is computed, the numerica\fvalk ofa R dbér electron in,an elementarpcéllision reac-
effort is O(N 2). Considering the large number of discretiza- ,. Y 9 y

tion points one needs in PFR problems, the savings offeregogggsgow?féebgﬁr&ggstg;hglggt?gib;e Sé;isggtge Zr;e{,?é -
by our method is significant. A comparison of the numerical P b y

effort of Monte Carlo simulations is somewhat more diffi- nuclear motion of colliding atoms.

cult, since it strongly depends on the required accuracy. The

number of photons that have to be simulated depends on the ACKNOWLEDGMENTS
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FIG. 4. Same as Fig. 3, but the initial frequency-dependent ex
cited atoms distribution is taken as described in @&).

displayedJ(t) curves, namely those calculated for frequen-
ciesy; with 7;=7,5,3. Obviously, tailoring of the initial pro-
file of excited atoms can allow one to obtain various time
dependencies of the escaping radiation intensity, worth to b
demonstrated in specific experimental conditions.
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