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The fundamental-mode oscillation of an atomic force microscope cantilever, operated in the self-oscillator
(SO) mode, is analyzed to interpret resonant frequencysf rd and oscillation amplitudesAd in terms of probe-
sample conservative and dissipative forces. Measurements off r and A versus probe-surface gap, for a
H-terminated silicon probe and surface in air, have been carried out in the constant-excitation(CE), SO mode
for a variety of SO phases. We provide the fullz dependence ofA and Df due to both conservative and
dissipative forces, evidencing a minimum value of tip-sample closest approach distance expected from theory.
The existence of such a minimum preserves tips from destructive interaction in CE mode.
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I. INTRODUCTION

Dynamic force spectroscopy(DFS) is a scanning probe
microscopy technique that is capable of measuring the local
interaction potential between a surface and the apex atoms of
an atomic force microscope(AFM) probe. This spectros-
copy, which is utilized here, can provide information on the
energy dissipation due to the dynamical interaction of the
atoms in close contact.

Atomic force microscopy1 in the noncontact mode2 is per-
formed by oscillating a sharp-tipped probe mounted on a
cantilever, in thez direction normal to the sample surface, at
frequencyf. This is usually done by periodically displacing
the cantilever base(sketched in Fig. 1, “OPCS”) with a pi-
ezoactuator slab, and the probe motion is typically detected
by the optical lever method.3 If the tip interacts with an ex-
ternal force field, as occurs in proximity to a surface, the
oscillatory motion will be altered by the interaction. This
provides a basis for maintaining a constant probe-surface gap
during scanning, as well as information on the conservative
and dissipative interactions between the probe and surface.

When the tip oscillation is excited by a constant-
frequency, constant-drive amplitudesAdd motion of the can-
tilever base, this is referred to asnoncontact modewhen the
oscillation amplitudesAd of the tip is below,2 nm and
smaller than the probe-surface gap.2 For higher amplitudes
(ten to hundreds of nm) it is named intermittent-contact
modeor tapping mode.4 For a given lever stiffnessk, increas-
ing the oscillation amplitude permits a closer approach dis-
tance before jump-into-contact atzJIC, since FTSszJICd=kA,
whereFTS is the tip/sample interaction force.5 With standard
values of k for microfabricated cantileverss1–100 N/md
and sufficient amplitude, the entire attractive and repulsive
regions of interaction can be studied without loss of oscilla-
tion. A measurement of oscillation phasef, relative to the
excitation, is named phase imaging,6 and can provide quan-
titative information on the local surface dissipation.7

An alternate to phase imaging is theself-oscillator(SO)
technique,8 in which instead of using a fixed drive frequency,
the cantilever becomes the frequency-selecting element in a
self-oscillator circuit. This is achieved by positive feedback

of the lever-deflection signal to the cantilever-base piezo,
with the feedback circuit maintaining a constantf. Maxi-
mum oscillation amplitude occurs atf=p /2 that defines the
resonance frequencyf r, with p /2,f,p above resonance
and 0,f,p /2 below. If the resonance width does not
change orf=p /2, the cantilever oscillation frequency in-
stantaneously follows changes inf r as it varies due to exter-
nal forces. The frequency shift(Df r= f r− f0, where f0 is the
free-lever resonance) due to the probe/sample interaction is
measured with a frequency-to-voltage converter, and this can
be fed back to maintain the probe-surface gap during scan-
ning. For DFS measurements, the importance of using the

FIG. 1. Sketch of the experimental setup(top). The dashed box
delimits the self-oscillator section. I= integral controller of oscilla-
tion amplitude; rect=rectifier; PI=proportional-integral controller
of z-position; OPCS=oscillating probe/cantilever system, sketched
separately on bottom(proportions are not respected).
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SO mode, versus the fixed-f mode, resides mainly in faster
response, more straightforward DFS interpretation, and im-
proved operation and approach stability.

Two different operation modes are commonly employed
in the SO method; theconstant-amplitude(CA) mode8 and
the constant-excitation(CE) mode.9 In the CA mode,A is
held constant by an automatic gain control(AGC) feedback
loop that controls the driving amplitudeAd of the piezoslab.8

The response time is not limited by theQ factor of the can-
tilever oscillation in this mode, so it is particularly useful in
vacuum. Information about dissipation may be extracted
from the AGC feedback signalga, which representsAd/A.10

In the CE mode, the AGC circuit maintainsAd at a constant
value, whileA is allowed to vary. The amplitude response
time isQ-limited in the CE mode, so that it is most useful in
air. However, the CE mode has a significant advantage com-
pared to CA mode, as has been previously pointed out.9 It
tends to preserve the probe tip from damage, saving experi-
mental time and yielding reproducible measurements. In ad-
dition, as shown below, it is free of approach or scan insta-
bilities at theA values used for DFS, making it convenient
compared also to tapping mode.

Theoretical studies and numerical simulations have pre-
dicted the effect of conservative and dissipative forces onA
andDf in the CE mode,11,12 with f=p /2, mainly as an ex-
tension of the established knowledge of the CA mode.13 Here
we extend the analysis to allf values, and calculate the
expected dependence ofA and Df on the closest approach
distancezc for model interactions. We provide experimental
A andDf versusL andf, in the CE mode in ambient air, and
reduce these to functions ofzc. Comparing to the model in-
teractions then provides the conservative and dissipative
forces acting on the lever. In our approach-curves, for vari-
ousf, we always observe a minimumzc versusL, and there-
fore a maximum interaction strength that is anticipated by
the theory. This explains the protection of the probe obtained
experimentally in CE mode, thereby leading to high repro-
ducibility and low time consumption in experiments.

The paper is organized as follows: In Sec. II the experi-
mental arrangement is described, along with a brief review of
the SO method useful for better understanding of phase-
locked, SO principle; next, approach curve data of
H-terminated silicon tips on silicon surfaces with CE, SO
mode operation in air are presented. In Sec. III, starting from
the accepted models that relate oscillation amplitude and fre-
quency shift to the conservative and dissipative forces, rel-
evant relations are carried out for the generic SO phase, in
order to allow interpretation of our data. Based on those
relations,A and Df are calculated for an example pair of
conservative and dissipative forces, in order to fit our experi-
mental curves and characterize the operation of our tip/
sample system in ambient air. Finally, in Sec. IV we summa-
rize our findings.

II. MEASUREMENTS IN CE, SO MODE

A. Experimental setup

Experiments have been conducted with a home-made,
dynamic-mode AFM described elsewhere14 and operated as

in Fig. 1. The microscope is operated in the SO mode with
adjustable feedback phasesfad. The cantilever is the
frequency-selective element in a positive feedback loop, de-
picted in Fig. 1 with the dashed box and composed of an
adjustable-gain amplifier, a phase shifter, and the excitation/
detection system of the cantilever motion, named an oscillat-
ing probe/cantilever system(OPCS). The OPCS contains the
cantilever, with base mounted to a small, high-frequency pi-
ezodriver, then to a copper mass and a tube piezoactuator for
z-control. A laser and split-diode detector measures the de-
flection angle of the probe end. Additionally, an AGC circuit
detects the oscillation signal amplitude and adjusts the sys-
tem gain by means of a negative-feedback loop to stabilize it
to a set valuesAsetd. When the “CA/CE” switch in Fig. 1 is in
the “CA” position, the lever oscillation is rectified,A is held
constant, and the system is in the CA mode. With the switch
in the “CE” position,Ad is detected and stabilized, and the
constant-excitation mode is obtained. A frequency modula-
tion (FM) detector provides a signal proportional tof, which
may be utilized for DFS as well as for distance regulation
(z-control in Fig. 1) when the switch on the right side of Fig.
1 is in the “f” position. Alternatively, with the switch in the
“ga” position the value ofga is used forz-control. This yields
to constantA and Ad scans with constant dissipation power.

The approach curves are recorded as follows. In CE mode
and with a fixedfa=fset, the sample is approached with
A-feedback until stabilized at amplitudeAset, typically with
Aset>0.9 A0 and free-lever amplitudeA0>30 nm. The
A-feedback is then disconnected, the tip is withdrawn a fixed
distance, next moved slowly forward to beyond the setpoint,
then withdrawn slowly, and finally returned toA-feedback at
Aset. The acquired signals for eachfa areDfsLd and the AGC
control voltagefVAGCsLdg, whereL is the probe-sample gap
for an undeflected lever(Fig. 1). The SO feedback is still
active and the AGC maintains a constantAd during this ap-
proach and withdrawal, by variable-gain amplification of the
lever-reflection optical signal. Thus, AGC gainsgad is pro-
portional toAd/A, and is a measured function ofVAGC (we
calibratega versusVAGC using an external signal generator),
so this providesAsLd=Ad/gasLd.

With the tip withdrawn, varying the phase in the SO mode
yields Asfd, the cantilever resonance curve. The phase is in-
dependently measured by a home-made, high-frequency
lock-in amplifier. As expected, this curve matches the reso-
nance curve obtained by exciting the cantilever with an ex-
ternal function generator[Eq. (6), see Sec. III], so it is not
shown. This indicates that the SO cantilever excitation pro-
vides the same behavior as monochromatic excitation, and
that no spurious modes within the support structure are ex-
cited. For our AFM levers in air, this curve typically fitsQ
=200–280.

The silicon probe and sample were alcohol-cleaned and
H-terminated in buffered hydrofloric acid, an hour or so be-
fore taking the data. They are also bothn-doped and held at
fixed potential difference, generally 0 V, unless stated other-
wise. The mounted probe and sample are exposed to an ion-
ized Ar flux to eliminate static charges before measurements.

B. Distance calibrations

The main reduction performed on theDf and A data is
from functions ofL to functions of “closest approach dis-
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tance” zcsLd=L−AsLd+DLfAsLd , fsLdg, whereL is obtained
from thez-distance piezovoltagesVZd andA from the AGC
control voltagesVAGCd, as described above. Due to the cycle-
averaged force on the lever, it oscillates about a shiftedz
location, L+DL, with DL given by Eq.(10) of Sec. III in
terms ofA andDf. DL is usually a smallz correction in the
attractive (negative Df) region, but is important in the
strongly repulsive region.zc is the minimum tip-sample dis-
tance reached during the oscillation; since onlyzc displace-
ments are meaningful, we normally setzc to zero at its small-
est value within a set of approach curves.

SinceDzc during approach is primarily the difference be-
tween two larger numbers,DL and DA, and the surface in-
teraction occurs within a smallDzc range, accurate calibra-
tion of DL and A (in absolute units, e.g., in nanometers) is
essential. We utilize several techniques to calibrate the piezo-
tube expansion coefficientDL /DVZ. We measureDL /DVZ
interferometrically and by scanning a calibrated
lithographic-Si sample with 22 nm step height. These agree
within 5%, the typical variation due to hysteresis. To obtain
the calibration factor betweenA andSPD, the ac signal on the
split photodetector, the ac signal/dc signal combined with the
laser-reflection geometry and deflected-lever shape may be
considered. However, a more accurate determination of
A/SPD (in nm/V) is obtained by changing the cantilever am-
plitude byDA and measuring the correspondingDL while the
microscope is operating inz-feedback. This is done in the
repulsive regime,(positiveDf), sincezc is then almost inde-
pendent ofA. For example, ifSPD is decreased by 30% and
DL=30 nm maintains the fixedDf, then DA=30 nm oc-
curred to maintain the constantzc, and the originalA value
was 100 nm. This accuracy of this calibration is also limited
to ,5% by hysteresis inz-piezotube motion, which is appar-
ent in forward versus backwardz scans. For this reason, the
approach data were taken with large forward scans, yielding
a fairly reproducible and linear relation betweenL and VZ,
but still several percent variations occur depending on the
previousz-piezo motion. Varying either calibration by 5% in
the reduction ofAsLd data toAszcd yields quite differentzc

ranges for the surface interaction, while adjusting one cali-
bration within this 5% range yieldsAszcd andDfszcd, which
look appropriate based on our theoretical expectations.
Clearly, this does not allow us to accurately establish the
steepness of the conservative and dissipative forces from our
current data. Accurate, hysteresis-free motion transducers are
available, and in hindsight this is a crucial component for
accurate CE dynamic force microscopy.

C. Results

1. Approach curves

With the freely oscillating cantilever, we could adjust the
SO feedback phasefset within 40° either side of the 90° that
yields f r. We confirmed that, for the entire positive feedback
loop, the phase variation withDf andDga was negligible; all
phase/frequency dependence was due to the lever mechanical
resonance. Operation at allfset seemed affected by the same
fluctuation and noise, at least in the steady state(as also
apparent from Ref. 15, Fig. 1). Figure 2(a) shows measured

FIG. 2. Experimental approach curves for amplitude[(a),(b)]
and frequency[(c),(d)], plotted either vsL+DL [(a),(c)] and vszc

[(b),(d)]. Different amplifier phasesfa were used.
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A versusL, for a range offset. For much of the approach
data,Dfa,0.1° was observed, but occasionallyDfa on the
order of 0.5° occurred, with the change more pronounced for
fa below 90°(−0.14° atfa=117.4° and −0.6° atfa=49.1°).
Figure 2(b) shows the same data versus the closest approach
zc, obtained as previously described.(The data versusL are
smoothed by adjacent-averaging over a range of ±0.5 nm.) It
is evident that a minimumzc exists, with a reversal asL is
further decreased. Reproduciblez-approach and imaging
measurements, including sharp images of nanometer-sized
quantum dots, were obtained over an extended time period
for each probe. This confirms that this mode preserved the
tips from damage, and probably also from loss of the
H-termination by hard contact with the surface. In contrast,
tip damage is often observed during atomic resolution imag-
ing using the CA mode, even under UHV conditions where
less lever dissipation occurs.5,16

In Figs. 2(c) and 2(d), Df is plotted versusL andzc for the
fset values in Figs. 2(a) and 2(b); the A and Df data were
obtained simultaneously. Note that, as mentioned below[Eq.
(14), Sec. III], A is only slightly less thanA0 at the minimum
of Df. From Fig. 2(b), it is evident how all curves group into
the same one in the repulsive region close to the minimum
zc. Note that, forfa nearp /2, A>A0/2 at the minimumzc,
as predicted theoretically(Sec. III). Also note that, except for
thefa=49° case,Df monotonically increases in the repulsive
region in Fig. 2(d), even thoughzc reverses direction. Thus,
if positive-Df feedback was used, the tip would normally be
protected, as in the case ofA-feedback.

In SO mode withfa=p /2, any amplitude change is en-
tirely due to surface-induced dissipation, andDf is entirely
determined by the conservative forces. At otherfa, increased
damping also influencesDf, since an “effectiveQ” change is
induced[see Eq.(5), Sec. III]. Indeed, the amplitude versus
separation curves[Figs. 2(a) and 2(b)] are less dependent on
fa than the frequency shifts[Figs. 2(c) and 2(d)].

2. Voltage dependence

The dependence ofDfszcd and Aszcd on probe biassVPd
was measured for −5 to +5 V bias. If we define thezc lo-
cation of minimumDf r aszm=4 nm, then forVP=0 we ob-
servedDf r>0 for zc.7 nm. Applying bias, forzc.7 nm,
we measured Df >CVsnm/zdmfsVP−Voffsetd /Vg2, with
uVoffsetu,1 V and typically m,0.5 andCV ,3 Hz. For zc
,6 nm, an additional close-range increase inDf occurred,
often with some asymmetry versusVP−Voffset. Transmission
electron microscope(TEM) images of one of these probes,
after use, showed a very smooth and perfect,50-nm-radius
hemispherical tip. This clearly indicated melting during
gentle contact with the applied voltage. The probe and
sample are similarly doped,n-type silicon, cleaned by HF
etch, so no offset is expected.Aszc.7 nmd increased with
uVPu for one probe, but was essentially constant with several
others. Note that anA increase before the repulsive regime in
the CE mode has been also previously reported in Ref. 9.

One can estimate the expected dissipation due to the ca-
pacitive current through the tip apex. The capacitive charge
sq=CVd oscillating on the probe tip and substrate should
dissipate, within the spreading resistanceR=r /d, an energy

EC,Rq2/Dt in one cycle, whereDt,0.1 ms is the interac-
tion time, r,0.01V cm is the silicon resistivity, d
,10 nm is the capacitor diameter, andC=4p«0d

2/zc
=10−17 F for zc=1 nm. This yieldsEC,10−3 eV at 3 V bias,
compared to the estimated free-lever dissipation of 2500 eV.
Thus, we do not expect the lever amplitude to decrease sig-
nificantly through such dissipation.

III. MODEL

A. Theory

A theoretical description of the CE mode has been given
in Refs. 11 and 12. In order to emphasize certain features of
the motion, and to allow for arbitraryfa, we summarize the
fundamental-mode theory here. We also generalize to CA
and fixed-f modes, to allow comparative analysis between
modes with a consistent notation.

The AFM lever deflection is taken asDL+A cossvtd, the
surface-probe separation iszstd (see Fig. 1), a conservative
surface-probe forceFconsszd and a dissipative force
Fdisssz,dz/dtd act on the lever, ands2pf0d2=v0

2=k/m* , with
k the lever spring constant andm* an effective mass that
yields the free cantilever resonant frequencyf0. Solution
of the equation of motion of the AFM lever is available
from the literature,11,12 although here we do consider
the solution for a generic phase, and insert the average bend-
ing DL for more accurate definition ofzc. Here only
fundamental-mode components of the interactions are
included: F1,cons=sv /pdeFstdconscossvtddt and F1,diss

=sv /pdeFstddisssinsvtddt, where the integrals are over
one cycle and the t dependence comes fromzstd
=L+DL−A cosvt. Thus,F1,cons and F1,diss are functions of
the closest approach distance,zc>L+DL−A. With the ap-
proximations uf − f0u / f0!1, 1−f2/ f0

2>−2sf − f0d / f0, the
fundamental-mode solution has a resonant frequency

f r = f0s1 − F1,cons/2kAd, s1d

and an effectiveQ

1/Qeff = s1/Q + F1,diss/kAd, s2d

to yield

tanf = f0/2Qeffsf − f rd s3d

and

Ad
2/A2 = 4fsf − f rd/f0g2 + f1/Qeffg2. s4d

Equations (3) and (4) describe the fundamental-mode
phase and amplitude with surface forces, and withf r→ f0
andQeff→Q they describe the freely oscillating lever. As in
Ref. 17, one can expressf r as a function ofL and A, and
invert Eq.(4) to obtainf versusL, A andAd=QA0, whereA0
is the free-lever amplitude:

f = f rsA,Ld ± f0fAd
2/A2 − 1/QeffsA,Ld2g1/2/2

= f rsA,Ld + f0 cotf/2QeffsA,Ld, s5d

where we have made explicit the dependence off r andQeff
on A and L. Equation(5) generalizes Eq.(4) of Ref. 17 to
include dissipative forces. Combining Eqs.(3) and(4) yields
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sin2 fsA,Ld = fA/AdQeffsA,Ldg2, s6d

where ga=A/Ad is also a function ofA and L. SinceQeff
=Q in the absence of a surface dissipative force, Eq.(6)
shows thatA/Ad is uniquely related tof if Fdissstd=0, even
when a conservative force changes the resonance frequency.
Equation (6) can be used to experimentally establish
QeffsL ,Ad, and thusF1,disssA,Ld, from f andA/Ad versusA
andL. In the SO method,f is locked by the oscillator circuit
and is constant, so any variation inA/Ad is entirely due to
F1,diss. A measurement off rsA,Ld, and hence ofF1,conssA,Ld,
is most easily done by measuringf versusA and L with f
=p /2, since in this casef = f r.

In this fundamental-mode analysis, Eq.(1) shows thatf r
is only influenced by the conservative force, even though the
probe/surface interaction is concentrated in a small fraction
of the cycle. The lever emerges from this interaction with
total energy decreased byEdiss, and this energy is gradually
recovered during the remainder of the cycle. The energy just
before surface interaction isEdiss/2 above the average,
speeding up the cycle, just after the interaction it isEdiss/2
below the average, slowing down the cycle, whileEdiss is
gradually recovered during the remainder of the cycle. These
are compensating effects and there is no net fundamental-
mode frequency shift due to the dissipative energy loss.

It is also well known, from fixed-f theoretical
developments,18 that the energy relation between probe-
sample dissipated energy per cyclesEdissd and oscillation am-
plitude is

Ediss/E0 = yyd − y2, s7d

wherey=A/A0, yd=Ad/Ad0, A0 is the free-lever amplitude,
Ad0 is the free-lever base amplitude,E0=pkA0

2/Q is the
free-lever dissipation, andEdamp=pkA2/Q the actual lever
dissipation per cycle. We note thatEdiss equals the lever ve-
locity fAv sinsvtdg times Fdissstd, integrated through a sur-
face interaction, so thatEdiss=pAF1,diss. Using this in Eqs.
(2) and(6) also yields Eq.(7). Ediss will normally be a func-
tion of A as well as the force, as will be evident in our
example below[Eq. (14)]. In CE mode,yd=1 in Eq.(7), and
inversion of this equation yields

y = f1 ± s1 − 4Ediss/E0d1/2g/2. s8d

As L decreases from̀ in CE mode, the positive sign
applies in Eq. (8), zc decreases,Ediss increases, andA
decreases towardA0/2, where Ediss=E0/4. When A
,A0/2 sy,

1
2

d, the negative sign applies to further decreases
in L. This L decrease is accompanied byA decreasing faster
than L, so thatzc increases andEdiss decreases. Thus, fory
,

1
2, the probe/surface interaction weakens as the cantilever

base moves closer to the surface, and the maximumEdiss is
E0/4. This tends to protect the probe from damage, although
the time to come to this equilibrium condition is,Q/v and
this does not protect against a rapid decrease
in L.

B. Description of CA and fixed-f modes

In the CA mode, whereA is held constant andAd is var-
ied, Eq.(7) becomes

Ediss= E0fyd − 1g. s9d

Here oscillation is sustained even when a largeEdiss oc-
curs in each surface collision, and as a result a larger range
of Edisscan be studied. For the same reason, it is much easier
to damage the probe tip in this operating mode, particularly
in air whereE0 is large.

In CE modey=Qeff /Q, while in CA mode 1/yd=Qeff /Q,
and in both cases Q/Qeff=1+QF1,dissszc,Ad /kA
=1+Edissszc,Ad /Edamp. From Eq.(1), comparing the defini-
tion of F1,cons to the cycle-averaged conservative force, and
equating this tok times the average lever deflectionsDLd,
one obtains

DL = ADf/f0. s10d

This allowsDL to be easily established from experimentally
measured quantities, for use inzc=L−A+DL, although in the
present experimentDL,0.2 nm due to limiting the size of
the repulsive interaction and this is not a very important
correction tozc>L−A.

Combining Eqs.(2) and (5) yields

fszc,A,fd = f rszc,Ad − sf0/2Qdf1 + QF1,dissszc,Ad/kAgcotf,

s11d

where f rszc,Ad is given by Eq.(1). F1,dissszc,Ad can also be
expressed in terms of average power dissipation,
Pdissszc,Ad= f0 Edissszc,Ad=pf0A F1,dissszc,Ad, and the substi-
tution 1+QF1,dissszc,Ad /kA=1+s1/y2dEdissszc,Ad /E0 is use-
ful, particularly in the CA mode wherey=1. Thus, thef
dependence off − f0 with fixed A results from theQ change
caused by the dissipative energy loss. Thef dependence of
A/Ad is given by Eq.(6), with Qeff a function ofA andzc.

Finally, for describing the constant frequency and excita-
tion mode(fixed-f mode or tapping mode), where phase is
not controlled, it is useful to combine the first part of Eq.(5)
with Eq. (7) to obtain fsA0,Ld as

f = f rsA,Ld ± spf0/Qdfs1/y2d − s1 + y − y2d2g1/2/2. s12d

This describes operation with a dissipative force, while re-
placing the factor 1+y−y2 with 1 describes purely conserva-
tive forces.

C. Experimental implications

It bears repeating that no fundamental-modeA changes
occur in SO mode for entirely conservative interactions, for
any fset, but dissipation normally plays a major role and
causesA/Ad to vary. In the CE mode,A is observed to de-
crease monotonically with decreasingL. As shown previ-
ously, in the CE mode the maximum power dissipation due
to a dissipative surface interaction is,25% of the free-lever
dissipation, and this occurs whenA is ,50% of the free-
lever amplitude. This limits the maximum indentation of the
tip and the strength of the interaction, so thatA can be used
safely for distance stabilization during scanning.

We see in Eq.(1) that in SO mode the resonance fre-
quencyf r depends only on the conservative force, and from
Eq. (6) ga=Ad/A depends only on the dissipative force, re-
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gardless of the chosen phase. Thus, in the SO mode,gain
adjustment will occur exclusively in presence of dissipation,
for any value of phase. As has been generally recognized, in
the SO modeDf is entirely determined by the conservative
force only forfa=p /2. Equations(1) and (2) show thatDf
reflects the fundamental-mode component of this conserva-
tive force, versus the closest approach distance,zc=L+DL
−A. Equation(9) shows that in the CA, SO mode,ga re-
sponds to the dissipated energy/dissipative force versuszc,
independent of the conservative force. Equations(7) and(8)
show thatga similarly provides the dissipated energy versus
zc in the CE mode, again without influence of the conserva-
tive force. Thus, quantitative interpretation of DFS data
taken in CE mode contains no additional difficulty with re-
spect to the more established CA mode, while it is still sim-
pler than the fixed-f mode. Therefore, in some sense, the CE
mode of the SO method maintains many of the advantages of
tapping mode, while its employment in DFS is less likely to
damage probes than CA mode.

D. Example with model potential

We will now apply the equations describing the SO mode
and analyzed above to attempt a fit of our experimental
curves. We calculate heref r andA/Ad in the SO mode for an
example set of conservative and dissipative probe/surface
forces,Fconsszd andFdissszd, relevant to our system. The per-
turbations to sinusoidal lever motion are very small, so that a
superposition principle holds; the conservative and dissipa-
tive forces can be expressed as a sum of terms, and each term
yields a frequency shift or energy loss versuszc that is inde-
pendent of the other terms. The data presented in Sec. III
yield a negativeDf rszcd that greatly exceeds that due to the
Van der Waals attraction, and has a much shorter range. At
smallerzc a positiveDf r occurs due to the strongly repulsive
interaction. To match the typicalDf rszcd behavior of the
data, we use a conservative force of the formFconsszd
=Cconsh−M expf−sz−zmd /sg+M1/2 expf−Msz−zmd /sgj,
whereCcons, M, zm, ands are parameters of the potential. An
analytic approximation for the solution of the equation of
motion using the expansionxstd=A cosf2pft+fstdg, where
xstd is the probe position, andA@s yields:

Df rszCd =
Cconss

1/2f0

2s2pd1/2kA3/2h− M expf− szC − zmd/sg

+ expf− MszC − zmd/sgj, s13d

where f0 is the lever resonant frequency. As will be shown
below, with M =1.1, s=1 nm,Ccons=100 nN, and any value
for zm (the minimum ofDf r), this yields the typically ob-
served negativeDfszcd.

For the dissipative force we choose a power law times the
probe velocity:Fdisssz,dz/dtd=Cdissdz/dtszm/zdn. Again ex-
panding xstd as A cosf2pft+fstdg, and keeping leading
terms, yields an analytic lever energy loss per cyclesEdissd.
For an exponential force this approximation agrees with a
previous result,19 but in the present case a power law with
n>6 better represents the steepening of the measured
Edissszcd and the relation betweenDf and Ediss. Note that a

sum of exponentials works as well, but using the power law
yields an analytic expression forzcsAd. This yields, forA
@zm/n,

Ediss= 8pf0CdissA
1/2zm

1.5n−1.6szm/zcdn−1.5, s14d

where we have used an approximation valid fornù6:
ex2s1+x2d−ndx=0.7n−1.6. To roughly fit the data, we taken
=6 and zm=4 nm, and use the samezm in Eq. (13). For
A=30 nm the data typically yieldEdiss>50 eV and
Df r>−80 Hz at zm. To obtain this from Eq.(14) we take
Cdiss=3310−6snm/zmd1.5 kg/s for a typical lever, character-
ized byk=40 N/m,Q=280, andf0=2.73105 Hz. The free-
lever dissipation,E0=pkA0

2/Q>2500 eV, greatly exceeds
Edissszmd, soA>A0 at zm.

Figure 3 shows resonance curves in CE mode calculated
for severalL values and the above assumed forces. These
Asfd curves are calculated by using Eq.(13) for f r in Eq.
(12), and takingzc=L−A and zm=4 nm. This shows the
Fdiss=0 case; the dissipative form of Eq.(12), obtained by
means of Eq.(14), yields a similar plot, but with a 10%–20%
wider half-height width due to the lowerQeff. The peak am-
plitude occurs on resonance, withAsf rd=A0=QAd and f
=p /2. As was pointed out above, the double-valued charac-
ter of Asfd can lead to instabilities in fixed-f mode. However,
since eachA/A0 value and branch corresponds to a unique
phase, there is no instability in SO mode. This is consistent
with Eq. (6), where the phase depends only onA/Ad, or
equivalentlyA/A0, independent of the value off r. Thus, with
fa constant during approach in SO mode,A is constant if
Fdiss=0, andga increases smoothly(without instability) dur-
ing approach in the CE, SO mode withFdissÞ0.

TheDfszcd andEdissszcd that result from Eqs.(13) and(14)
are shown in Figs. 4 and 5 for the CA mode and examples of

FIG. 3. Calculated oscillation amplitudesAd as a fraction of
free-lever amplitude on resonancesA0d, versus frequency offset
from lever resonancesDfd and the average probe-surface separation
sLd. The example conditions areA0=30 nm, f r=300 kHz, and the
conservative force used in Eq.(13), which is minimum atz=4 nm.
Note that the probe’s closest approaches are 1, 2 and 3 nm for
A/A0=1 andL=31, 32, and 33 nm, respectively.
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A=30 and 100 nm. From Eq.(9), the normally measured
feedback gain isga=Ad/Ad0=1+Ediss/E0, so thatga can be
obtained from theEdiss versuszc plotted in Fig. 4. If Fdiss
=0, Dfszcd is independent off for eachA, and from Eq.(11),
this situation only changes ifEdiss@E0. Thus Dfszcd is
largely independent off in Fig. 4, although, at smallerzc
than shown,Ediss@E0 and largef dependences occur due to
the changingQ. This strongly repulsive regime is not
sampled in the present, low-Q air experiment, as it would
damage the probe. For vacuum operation, with,100 times
larger Q and 100 times smallerE0, this regime may be ac-
cessible without probe damage; Eq.(11) then yieldsDf that

are sensitive tof. Since thef dependence ofDf is entirely
due to the dissipative force, this can be used to establish
Edissszcd, as canA/Ad versuszc.

To describefsL ,Ad,fd and AsL ,Ad,fd for SO operation
in CE mode, in addition to replacingzc with L+DL−A in Eq.
(14), A must be replaced by its dependence onAd, f andL.
While this can be done, the result is neither analytic nor
necessary since data can readily be reduced toAszc,Ad,fd
and fszc,Ad,fd using the measuredL, AsLd, and DfsLd to
establishzc=L+DL−A versusL. In essence, if SO data is
reduced to a function ofzc, then either CE or CA mode can
be compared to a calculation versuszc. The primary differ-
ence is thatA varies withL in the CE mode. Of course, the
measurements yield changes only inzc; the surface “contact”
location is estimated only from the character of the close-
range, positiveDfszcd, which reflects the repulsiveFconsszcd.
To obtainA versuszc in the CE mode for the model poten-
tials of Eqs.(13) and (14), we takey=A/A0 in Eqs.(7) and
(8), whereEdissszc,Ad /E0=y−y2; usingEdissszc,Ad from Eq.
(14) yields zc=zmUsA0d1/sn−1.5d, where UsA0d
=8Qf0Cdisszm

3/2n−1.6/kA0
3/2. This establishes thezc axis in

Figs. 4 and 5. To emphasize that the surface energy domi-
nates asy decreases, we have also plottedEdiss/Etotal in Fig.
5, where Etotal=Ediss+Edamp is the total dissipation and
Edamp=y2E0 is the lever dissipation.

Comparison of experimental data forAszcd [Fig. 2(b)]
with the theoretical curve(A/Ad in Fig. 5) provides reason-
able agreement in the explored regions10 to 30 nmd. The
modelFconshas been adjusted to have a much larger Van der
Waals attractive interaction, and a slower repulsive barrier
versuszc, than is expected between a pair H-terminated Si
surfaces. That may indicate tip or surface contamination, a
nonideal shape of the probe tip, or some different nonideal
behavior.

E. Normalized frequency shift

The quantityg=ksDf / fdA3/2, called normalized frequency
shift,5 can be used to compare approach curves at different
amplitudes, to correct for amplitude and thus highlight the
role of the conservative tip/sample interaction. This quantity

FIG. 4. Calculated angular frequency shift and dissipative en-
ergy loss versuszc, the probe-surface gap, for CA operation and the
forces described in Sec. III. The lever-damping energy loss per
cycle sE0d equals 2500s28 000d eV for A=30 s100d nm.

FIG. 5. Calculated frequency shift(Df in kHz), surface-induced
energy losssEdissd as a fraction of initial lever dissipation(E0

=2500 eV per cycle) and total (lever plus surface) dissipation
sEtotald, and oscillation amplitudesAd divided by free-lever ampli-
tude sA0d, all as functions of the closest approachszcd. The CE
mode withA0=30 nm and the sample conservative and dissipative
forces described in Sec. III have been used. The arrows show the
direction of response to decreasingL.

FIG. 6. Normalized frequency shiftsgd vs zc, from the data of
Fig. 2.
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is particularly useful when operating in the CE mode, where
amplitude varies within a single approach curve, as also evi-
dent from the theoretical developments of CE.11 In Fig. 6, g
is plotted as a function ofzc, showing a negative extremum
at higher separations(attractive region) followed by a maxi-
mum positive value at smaller separation in the repulsive
region. The repulsive interaction is bounded in the CE mode,
whereas in the CA mode it would increase monotonically
with decreasingL. The two extrema are reached within a
smaller separation interval forfa=p /2, indicating that for
such phase value higher sensitivity is obtained.

Data were taken with a variety of probes, four of which
were later imaged in a TEM and found to have tip radii
varying from 8 to 30 nm. Nonetheless, a relatively consis-
tent form of attractiveDf rszcd was measured, although its
magnitude and the steepness of the repulsiveDf rszcd varied
by factors of.2. Some of theseDf rszcd, obtained withA
>30 nm andfset=p /2, are shown asgszcd in Fig. 7 with the
minimum g set tozc=4 nm. The theoreticalgszcd is shown
for comparison, as obtained from Eqs.(13) and (14).

The abrupt onset of negativeDf r implies an abrupt onset
of the conservative force, as in theFconsszd given above Eq.
(13). The Van der Waals and capacitive forces vary much
more slowly withz, and are also much smaller than the ob-
served force. A possible explanation of this strong, close
range attraction is charge dipoles on the probe surface. Sur-
face states within the silicon bandgap probably exist on the
probe tip, and should be negatively charged in thisn+ doped
silicon. This charge is shielded within the silicon by an op-
posite charge distributed within the Debye length, which is
,1 nm in the bulk silicon but could be somewhat larger near
the probe tip. We estimate that 10–30 such dipoles, interact-
ing with the silicon substrate, could yield the observed at-
tractive force. The repulsive interaction, associated with the
positive frequency shifts at smallzc, grows relatively slowly

compared to expected repulsive atomic overlaps. This type
of behavior is often observed, and attributed to the presence
of weakly bound adatoms on the crystal surfaces.20 In this
case of H-terminated Si, this extra attraction could be pro-
duced by hydrocarbons on the probe tip.

F. Energy dissipation

Figure 8 showsEdiss as a function ofzc, using Eq.(7). As
expected, a maximum dissipation of, 1

4 of the free-lever
dissipation is attained at the closest range. The highestA,
hence highest surface dissipation, occurs forfa=p /2, where
the energy dissipation per cycle is,103 eV. This large value
is obtained due to the high lever dissipation of our low-Q,
air-operated AFM. An exponential fits well and provides a
decay distance of 1.2 nm forEdiss. Thezc

−4.5 form in Eq.(14)
provides a better fit to a variety of data with many probes,
and fits the lower half of the data in Fig. 8 but is steeper than
this data at smallzc. As has often been pointed out,20 this
dissipation could also be influenced by weakly bound ada-
toms on the crystal surfaces.

IV. CONCLUSIONS

In this paper we establish the following advancements on
the understanding of SO method, and particularly of its CE
mode:(i) we show fullz dependence ofA andDf, and cal-
culate conservative and dissipative surface forces, versus
gap, that are consistent with the observations;(ii ) we observe
a minimum in the closest approach distance, in agreement
with theory of CE mode extended to any phase value, and
due to the double-valued relation betweenA and Ediss; and
(iii ) we stress the importance of accuratez control for correct
quantitative DFS evaluations. We conclude that the self-
oscillating, constant-excitation technique investigated here
has some advantages relative to alternate methods, particu-
larly for AFM operation in air. In essence, improvements in
tip preservation, measurement reproducibility, and imaging
stability can be achieved.

This work has been supported by the Quantum Physics
Division of the National Institute of Standards and Technol-
ogy (NIST).

FIG. 7. Measured(open symbols) and calculated(solid points)
normalized resonance frequency shiftsg=kDf rA

3/2/ f0d, versus
probe closest approachszcd. The zero ofzc is arbitrary. Data are
shown from four probes, operated atA0>30 nm, that are different
than the one used for Figs. 2 and 7 data.

FIG. 8. Energy dissipation per cyclesEdissd vs zc, from the data
of Fig. 2.
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